L-shell x-ray intensity ratios for Au and Pb at excitation energies 36.82, 43.95, 48.60, 50.20 and 53.50 keV

1993 ◽  
Vol 47 (6) ◽  
pp. 765-768 ◽  
Author(s):  
D V Rao ◽  
G E Gigante ◽  
R Cesareo
Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


2014 ◽  
Vol 92 (11) ◽  
pp. 1489-1493 ◽  
Author(s):  
P.V. Sreevidya ◽  
S.B. Gudennavar ◽  
Daisy Joseph ◽  
S.G. Bubbly

K shell X-rays of barium and thallium following internal conversion decay in Cs137 and Hg203, respectively, were detected using a Si(Li) X-ray detector coupled to PC-based 8k multichannel analyser employing the method suggested earlier by our group. The K shell X-ray intensity ratios and vacancy transfer probabilities for thallium and barium were calculated. The obtained results are compared with theoretical, semiempirical, and others’ experimental results obtained via photoionization as well as decay processes. The effects of beta decay and internal conversion on X-ray emission probabilities are discussed.


2014 ◽  
Vol 119 (3) ◽  
pp. 392-397 ◽  
Author(s):  
L. F. M. Anand ◽  
S. B. Gudennavar ◽  
S. G. Bubbly ◽  
B. R. Kerur
Keyword(s):  
X Ray ◽  

Author(s):  
C.-E. Green ◽  
M. R. Cunningham ◽  
J. A. Green ◽  
J. R. Dawson ◽  
P. A. Jones ◽  
...  

AbstractThe intensity ratios of HCO+/HCN and HNC/HCN (1-0) reveal the relative influence of star formation and active galactic nuclei (AGN) or black holes on the circum-nuclear gas of a galaxy, allowing the identification of X-ray dominated regions (XDRs) and Photon-dominated regions (PDRs). It is not always clear in the literature how this intensity ratio calculation has been, or should be performed. This paper discusses ratio calculation methods for interferometric data.


2016 ◽  
Vol 20 (01n04) ◽  
pp. 337-351 ◽  
Author(s):  
Derrick R. Anderson ◽  
Pavlo V. Solntsev ◽  
Hannah M. Rhoda ◽  
Victor N. Nemykin

A presence of bulky 2,6-di-iso-propylphenoxy groups in bis-tert-butylisocyano adduct of 2(3),9(10),16(17),23(24)-tetrachloro-3(2),10(9),17(16),24(23)-tetra(2,6-di-iso-propylphenoxy)-phthalocyaninato iron(II) complex allows separation of two individual positional isomers and a mixture of the remaining two isomers using conventional chromatography. X-ray structures of “[Formula: see text]” and “[Formula: see text]” isomers were confimed by X-ray crystallography. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations of each individual positional isomer allowed insight into their electronic structures and vertical excitation energies, which were correlated with the experimental UV-vis and MCD spectra.


1995 ◽  
Vol 379 ◽  
Author(s):  
B. Jenichen ◽  
H. Neuroth ◽  
B. Brar ◽  
H. Kroemer

ABSTRACTShort-period (InAs)6/(AlSb)6 superlattices (SL) with AlAs-like and InSb-like interfaces (IF) grown on a relaxed AlSb buffer layer are studied by X-ray reflectivity and diffractometry measurements. Reflectivity measurements reveal average IF roughnesses between 0.6 and 1.0 nm. Measurements of the diffuse scattering show that the roughness is highly correlated from layer to layer. Triple crystal area scans illustrate that the inhomogeneous deformation of the buffer layer leads to a certain symmetric peak broadening. In the case of AlAs-like IFs an additional broadening of the SL peaks reveals lattice parameter gradients over the superlattice. This asymmetric peak broadening may be attributed to a further relaxation of the superlattice, which is inhomogeneous with depth. The diffusion of As into the AlSb layers leads to a peak shift and modifies the intensity ratios of the different satellite reflections. The best structural quality is achieved for superlattices with InSb-like IFs.


1979 ◽  
Vol 57 (10) ◽  
pp. 1746-1748 ◽  
Author(s):  
C. R. Cox ◽  
G. W. Dodson ◽  
M. Eckhause ◽  
R. D. Hart ◽  
J. R. Kane ◽  
...  
Keyword(s):  
X Ray ◽  

K-series muonic X-ray intensity ratios have been measured in Li. LiH, Be, BeH2, B, B10H14, and LiBH4. The relative intensities of the transitions np → 1s, for n > 2, are enhanced for the higher-Z components in the hydrides compared to the elemental targets. Possible explanations for the observed intensity ratios are discussed.


Sign in / Sign up

Export Citation Format

Share Document