K shell X-ray intensity ratios, K-Li, K-L, and K-M vacancy transfer probabilities of Ba and Tl following internal conversion process

2014 ◽  
Vol 92 (11) ◽  
pp. 1489-1493 ◽  
Author(s):  
P.V. Sreevidya ◽  
S.B. Gudennavar ◽  
Daisy Joseph ◽  
S.G. Bubbly

K shell X-rays of barium and thallium following internal conversion decay in Cs137 and Hg203, respectively, were detected using a Si(Li) X-ray detector coupled to PC-based 8k multichannel analyser employing the method suggested earlier by our group. The K shell X-ray intensity ratios and vacancy transfer probabilities for thallium and barium were calculated. The obtained results are compared with theoretical, semiempirical, and others’ experimental results obtained via photoionization as well as decay processes. The effects of beta decay and internal conversion on X-ray emission probabilities are discussed.

Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


2020 ◽  
Vol 108 (5) ◽  
pp. 415-423
Author(s):  
Esra Cinan ◽  
Bünyamin Aygün ◽  
M. I. Sayyed ◽  
Yüksel Özdemir

AbstractL X-ray intensity ratios for CeO2, Sm2(SO4)3, Ho2O3, and Yb2O3 compounds were experimentally investigated. The measurements were gauged following excitation by 59.54 keV γ-rays from a 100 mCi 241Am radioactive annular source at different temperatures in situ. Temperature change occurred between 50 °C and 400 °C. L X-ray emission spectra were obtained by using a solid-state Si(Li) X-ray detector. L X-ray production cross sections, intensity ratios, and full-width half maximum (FWHM) values for the compounds were determined by evaluating the emission spectra varying with the temperature. According to the results obtained, it was observed that Lβ1 X-rays were less influenced in comparison with Lα X-rays while Lα X-rays were also less influenced in comparison with Lβ2 X-rays.


1968 ◽  
Vol 46 (10) ◽  
pp. S409-S413 ◽  
Author(s):  
Walter H. G. Lewin ◽  
George W. Clark ◽  
William B. Smith

A complete X-ray survey of the northern sky has been made in the energy range 20–100 keV. Spectra are given for Cyg X-1 and Tau X-1. Intensity ratios (Cyg X-1/Tau X-1) of 0.84 ± 0.10 and 1.30 ± 0.25 were derived in the 20–70 keV range from data obtained on July 19, 1966 and February 13, 1967, respectively. Observations on Sco X-1 and the Coma cluster show upper limits which are quite different from results reported by other groups.


2017 ◽  
Vol 890 ◽  
pp. 223-226 ◽  
Author(s):  
Rıdvan Durak ◽  
Ferdi Akman ◽  
Abdulhalik Karabulut

The Ll, Lα and Lβ X-ray production cross sections for Pr, Nd, Sm, Eu, Gd and Tb elements were determined using a reflection geometry. The excitation was performed with a 241Am radioactive annular source and the L X-rays emitted from targets were counted with a high-resolution Si (Li) detector. The experimental values were compared with other available experimental results and theoretical data. An agreement is observed between the measured and other experimental results or theoretical data.


1968 ◽  
Vol 22 (5) ◽  
pp. 434-437 ◽  
Author(s):  
E. A. Hakkila ◽  
R. G. Hurley ◽  
G. R. Waterbury

Two methods were evaluated for determining rare earths in plutonium: (1) For the lighter rare earths ( Z≦66), or low concentrations of the heavier rare earths, an adjacent rare earth was added as a carrier and also as an internal standard, the rare earths were separated from plutonium by fluoride precipitation, and the measured intensity ratios for the sample and for solutions having known concentrations were compared. The Lβ1 x-rays were measured for the lighter rare earths and the Lα1 x rays for the remaining lanthanides. (2) For the heavier rare earths ( Z>66), the Lα1 x-ray intensities were measured from a nitric acid solution of the sample and compared to intensities obtained for solutions having known concentrations. The minimum concentrations that could be measured with a relative standard deviation no greater than 4% by the separation internal standard method varied from approximately 0.5% for lanthanum to 0.01% for lutetium. The direct measurement of x-ray intensity was much less sensitive. Applicability of the methods was shown by successful analyses of plutonium alloys containing dysprosium, thulium, or lutetium.


Author(s):  
A. Cerdeira-Estrada ◽  
A. De Luca ◽  
A. Cuttin ◽  
R. Mutihac

A new low power CMOS ASIC for the detection of X-rays was optimized for low power and low noise. Theoretical calculations and optimizations are presented and compared with experimental results. Noise as low as 120+25*Cin [pF] ENC rms was obtained including a silicon detector of 1.3 pF and 0.3nA of leakage. The power consumption is less than 100 W. Other circuit parameters are also shown.


1970 ◽  
Vol 14 ◽  
pp. 102-126 ◽  
Author(s):  
Frank L. Chan ◽  
W. Barclay Jones

AbstractAn x-ray spectrometer with experimental results is herewith described using a radiosotope source Fe55 having a halflife of 2.6 years. As a result of the disintegration, the managanese x-rays are capable of exciting fluorescent x-rays of such elements as sulfur, chlorine, potassium, calcium, scandium and titanium in aqueous solutions. These elements with the Ka wavelengths ranging from 5.3729 Å to 2.7496 Å may be designated as between the very soft x-rays on the one hand and the hard x-rays on the other. The x-ray spectrometer presently described has achieved a resolution of 136 ev, FWHM.Simultaneously, these elements have also been quantitatively determined by conventional x-ray fluorescent spectrometers. Since one of the spectrometers is designed to operate in vacuum as well as in helium or air, determination of sulfur, potassium and calcium were carried out in vacuum. Determination of chlorine was carried out in a helium atmosphere, Calcium, scandium and titanium were determined in air with an air-path spectrometer.In the present study aqueous solutions containing these elements were used. The use of aqueous solutions has the inherent advantages of being homogeneous and free from effect of particle size.


1973 ◽  
Vol 27 (6) ◽  
pp. 450-453 ◽  
Author(s):  
J. E. Pearson

The x-ray spectrum emitted from a tritided erbium film as a result of the beta decay is used to determine areal density and tritium content of the film. A Si (Li) detector and a dedicated minicomputer are used for detection, acquisition, and data reduction. The technique is suitable for areal densities of erbium from 0.01 mg/cm2 to as high as 10 mg/cm2. The occluded tritium can be measured from less than one to several hundred microliters. Precision is generally determined by counting errors and is typically less than 1% for a 5-min count while accuracy depends upon the empirical calibration technique.


2001 ◽  
Vol 19 (1) ◽  
pp. 125-131 ◽  
Author(s):  
KENICHI KINOSHITA ◽  
HIDEKI HARANO ◽  
KOJI YOSHII ◽  
TAKERU OHKUBO ◽  
ATSUSHI FUKASAWA ◽  
...  

For ultrafast material analyses, we constructed the time-resolved X-ray diffraction system utilizing ultrashort X-rays from laser-produced plasma generated by the 12-TW–50-fs laser at the Nuclear Engineering Research Laboratory. Ultrafast transient changes in laser-irradiated GaAs crystals were observed as X-ray diffraction patterns. Experimental results were compared with numerical analyses.


2015 ◽  
Vol 93 (12) ◽  
pp. 1532-1540 ◽  
Author(s):  
F. Akman ◽  
R. Durak ◽  
M.R. Kaçal

The total attenuation cross section at the K edge, absorption jump ratio, jump factor, Davisson–Kirchner ratio, and oscillator strength parameters for the K shell were determined by measuring the total attenuation cross sections around the K edge for Pr, Nd2O3, and Sm. The measurements were performed in a secondary excitation geometry using the Kα2, Kα1, Kβ1, and Kβ2 X-rays (in the region from 31.817 to 55.293 keV) from different secondary source targets excited by the 59.54 keV γ-photons from an 241Am annular source. It is the first time that the Davisson–Kirchner ratio values have been determined for present samples. The experimental results were compared with the theoretically calculated and other available experimental results.


Sign in / Sign up

Export Citation Format

Share Document