Clinical relative biological effectiveness of low-energy x-rays emitted by miniature x-ray devices

1999 ◽  
Vol 44 (2) ◽  
pp. 323-333 ◽  
Author(s):  
David J Brenner ◽  
Cheng-Shiun Leu ◽  
John F Beatty ◽  
Ruth E Shefer
2018 ◽  
Vol 63 (2) ◽  
pp. 62-64 ◽  
Author(s):  
А. Белоусов ◽  
A. Belousov ◽  
Г. Крусанов ◽  
G. Krusanov ◽  
А. Черняев ◽  
...  

Purpose: Determining the absorbed dose produced by photons, it is often assumed that it is equal to the radiation kerma. This assumption is valid only in the presence of an electronic equilibrium, which in turn is never ensured in practice. It leads to some uncertainty in determining the absorbed dose in the irradiated sample during radiobiological experiments. Therefore, it is necessary to estimate the uncertainty in determining the relative biological effectiveness of X-rays associated with uncertainty in the determination of the absorbed dose. Material and methods: The monochromatic X-ray photon emission is simulated through a standard 25 cm2 plastic flask containing 5 ml of the model culture medium (biological tissue with elemental composition C5H40O18N). The calculation of the absorbed dose in a culture medium is carried out in two ways: 1) the standard method, according to which the ratio of the absorbed dose in the medium and the ionization chamber is equal to the ratio of kerma in the medium and air; 2) determination of the absorbed dose in the medium and in the sensitive volume of the ionization chamber by computer simulation and calculating the ratio of these doses. For each primary photon energies, 108 histories are modeled, which makes it possible to achieve a statistical uncertainty not worse than 0.1 %. The energy step was 1 keV. The spectral distribution of X-ray energy is modeled separately for each set of anode materials, thickness and materials of the primary and secondary filters. The specification of the X-ray beams modeled in this work corresponds to the standards ISO 4037 and IEC 61267. Within the linear-quadratic model, the uncertainty of determining the RBEmax values is directly proportional to the uncertainty in the determination of the dose absorbed by the sample under study. Results: At energy of more than 60 keV, the ratios for water and biological tissue practically do not differ. At lower energies, up to about 20 keV, the ratio of the coefficients of air and water is slightly less than that of air and biological tissue. The maximum difference is ~ 1 % than usual and the equality of absorbed doses in the ionization chamber and sample is justified. At photon energy of 60 keV for the geometry in question, the uncertainty in determining the dose is about 50 %. For non-monochromatic radiation, the magnitude of the uncertainty is determined by the spectral composition of the radiation, since the curves vary greatly in the energy range 10–100 keV. It is shown that, depending on the spectral composition of X-ray radiation, uncertainty in the determination of the absorbed dose can reach 40–60 %. Such large uncertainty is due to the lack of electronic equilibrium in the radiation geometry used in practice. The spread of RBE values determined from the data of radiobiological experiments carried out by different authors can be determined both by differences in the experimental conditions and by uncertainty in the determination of the absorbed dose. Using Fricke dosimeters instead of ionization chambers in the same geometry allows you to reduce the uncertainty approximately 2 times, up to 10–30 %. Conclusion: The computer simulation of radiobiological experiments to determine the relative biological effectiveness of X-ray radiation is performed. The geometry of the experiments corresponds to the conditions for the use of standard bottles placed in the side holders. It is shown that the ratio of absorbed doses and kerma in the layers of biological tissue and air differ among themselves with an uncertainty up to 60 %. Depending on the quality of the beam, the true absorbed dose may differ from the one calculated on the assumption of kerma and dose equivalence by 50 %. Uncertainty in determining the RBE in these experiments is of the same order. The results are presented for X-ray beams with negligible fraction of photons with energies less than 10 keV. For beams of a different quality, the uncertainty in determination can significantly increase. For the correct evaluation of RBE, it is necessary to develop a uniform standard for carrying out radiobiological experiments. This standard should regulate both the geometry of the experiments and the conduct of dosimetric measurements.


2006 ◽  
Vol 33 (6Part22) ◽  
pp. 2273-2273
Author(s):  
M Srinivasan ◽  
M Yudelev ◽  
G Gutman ◽  
J Burmeister ◽  
K Lyons ◽  
...  

2020 ◽  
Vol 80 (04) ◽  
Author(s):  
Deepak Sharma ◽  
Richa Sao ◽  
Parmeshwar K. Sahu ◽  
Gautam Vishwakarma ◽  
J. P. Nair ◽  
...  

Knowledge about the type of mutagen used and its optimized dose are of paramount importance to design and implement any plant mutation breeding programme. Present study was first time carried out to evaluate the comparative effectiveness, radio-sensitivity behavior and relative biological effectiveness of four physical mutagens viz., gamma rays, X-rays, electron beam and proton beam on two short grain aromatic rice landraces viz., Samundchini and Vishnubhog. The seeds of these two varieties were treated with 15 different doses of all four mutagens, ranging from 50Gy to 750Gy with an interval of 50Gy. Germination percentage and seedling growth parameters were recorded at seven and 15 days after sowing, respectively in two replications. It was observed that germination percentage, shoot and root length of the seedling gradually declined with the increase in doses of all the physical mutagens. On the basis of these observations, LD50 and GR50 doses were calculated. The present study reports the optimum range of doses for gamma ray (280 to 350 Gy); electron beam (290 to 330Gy); X-ray (200 to 250 Gy) and proton beam (150 to 200Gy). GR50 doses were observed higher than LD50 doses for all the mutagens in both landraces. However, Samundchini showed higher LD50 and GR50 doses than Vishnubhog indicating later to be more radio-sensitive. Furthermore, both the genotypes were highly radio-sensitive for proton beam and least for gamma rays. Similarly, high relative biological effectiveness was observed for proton beam followed by X-ray, electron beam and gamma rays indicating their decreasing trend of penetration capacity and lethality. Results of present study will be useful for plant breeders to use the above mutagens in an appropriate dose for mutation breeding in rice.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vincent Paget ◽  
Mariam Ben Kacem ◽  
Morgane Dos Santos ◽  
Mohamed A. Benadjaoud ◽  
Frédéric Soysouvanh ◽  
...  

Abstract Based on classic clonogenic assay, it is accepted by the scientific community that, whatever the energy, the relative biological effectiveness of X-rays is equal to 1. However, although X-ray beams are widely used in diagnosis, interventional medicine and radiotherapy, comparisons of their energies are scarce. We therefore assessed in vitro the effects of low- and high-energy X-rays using Human umbilical vein endothelial cells (HUVECs) by performing clonogenic assay, measuring viability/mortality, counting γ-H2AX foci, studying cell proliferation and cellular senescence by flow cytometry and by performing gene analysis on custom arrays. Taken together, excepted for γ-H2AX foci counts, these experiments systematically show more adverse effects of high energy X-rays, while the relative biological effectiveness of photons is around 1, whatever the quality of the X-ray beam. These results strongly suggest that multiparametric analysis should be considered in support of clonogenic assay.


2015 ◽  
Vol 183 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Caitlin E. Mills ◽  
Christopher Thome ◽  
David Koff ◽  
David W. Andrews ◽  
Douglas R. Boreham

2006 ◽  
Vol 49 (spe) ◽  
pp. 17-23 ◽  
Author(s):  
Carlos de Austerlitz ◽  
Viviane Souza ◽  
Heldio Pereira Villar ◽  
Aloisio Cordilha

The performance of four X-ray qualities generated in a Pantak X-ray machine operating at 30-100 kV was determined with a parallel-plate ionization chamber and a Fricke dosimeter. X-ray qualities used were those recommended by Deutsch Internationale Normung DIN 6809 and dose measurements were carried out with Plexiglas® simulators. Results have shown that the Fricke dosimeter can be used not only for soft X-ray dosimetry, but also for the maintenance of low-energy measuring systems' calibration factor.


Sign in / Sign up

Export Citation Format

Share Document