A Study of 90° Ferroelectric Domain Structures in PbTiO 3 Thin Films by Means of Transmission Electron Microscopy

1995 ◽  
Vol 12 (12) ◽  
pp. 759-762 ◽  
Author(s):  
Ma Wenhui ◽  
Li Qi ◽  
Chen Yanfeng ◽  
Yu Tao ◽  
Shun Li ◽  
...  
2003 ◽  
Vol 779 ◽  
Author(s):  
Hyung Seok Kim ◽  
Sang Ho Oh ◽  
Ju Hyung Suh ◽  
Chan Gyung Park

AbstractMechanisms of misfit strain relaxation in epitaxially grown Bi4-xLaxTi3O12 (BLT) thin films deposited on SrTiO3 (STO) and LaAlO3 (LAO) substrates have been investigated by means of transmission electron microscopy (TEM). The misfit strain of 20 nm thick BLT films grown on STO substrate was relaxed by forming misfit dislocations at the interface. However, cracks were observed in 100 nm thick BLT films grown on the same STO. It was confirmed that cracks were formed because of high misfit strain accumulated with increasing the thickness of BLT, that was not sufficiently relaxed by misfit dislocations. In the case of the BLT film grown on LAO substrate, the magnitude of lattice misfit between BLT and LAO was very small (~1/10) in comparison with the case of the BLT grown on STO. The relatively small misfit strain formed in layered structure of the BLT films on LAO, therefore, was easily relaxed by distorting the film, rather than forming misfit dislocations or cracks, resulting in misorientation regions in the BLT film.


1996 ◽  
Vol 11 (11) ◽  
pp. 2777-2784 ◽  
Author(s):  
S. Takeno ◽  
S. Nakamura ◽  
K. Abe ◽  
S. Komatsu

A novel mosaic-like structure in SrTiO3 thin films was discovered and characterized by means of transmission electron microscopy (TEM). The films were deposited on a (001) oriented Pt surface. The orientation relationship between SrTiO3 film and Pt substrate was determined, and four types of growth modes were revealed. These four growth modes formed four types of domains, respectively, and these domains and Pt formed peculiarly ordered interfacial structures, i.e., near coincidence site lattices. Antiphase boundaries between two adjacent domains were also observed by high-resolution imaging.


2011 ◽  
Vol 485 ◽  
pp. 3-6
Author(s):  
Naoki Iwaji ◽  
Chiharu Sakaki ◽  
Nobuyuki Wada ◽  
Hiroshi Takagi ◽  
Shigeo Mori

We investigated domain structures in Pb(Zr,Ti)O3(PZT) ceramics whose composition lies on the morphotropic phase boundary (MPB) using transmission electron microscopy (TEM) and evaluated the piezoelectric properties of PZT. We found that monoclinic nanosized domains (nanodomains), which form in tetragonal domains, strongly correlated with the piezoelectric properties of PZT. The degree of formation of nanodomains depends on the grain composition. Thus, controlling the homogeneity of grain composition in the ceramics is crucial for optimizing the piezoelectric properties of PZT.


The model for the craze controlled fracture process in polystyrene has been developed further by taking into consideration the micromorphology of the crazes in which the nucleation and propagation of cracks occurs. The micromorphology of crazes formed in thin films of polystyrene, some of which had fractured, has been characterized by means of transmission electron microscopy. The observed micromorphological detail has been shown to be consistent with the micromorphology of the fracture surfaces of bulk specimens. In particular, the slow and fast regions of crack propagation which result in distinctly different fracture surface morphologies have been shown to be associated with differences in micromorphology which occur along the length of a craze.


MRS Advances ◽  
2016 ◽  
Vol 1 (9) ◽  
pp. 591-596
Author(s):  
Takumi Inoshita ◽  
Yasuhide Inoue ◽  
Yoichi Horibe ◽  
Yasumasa Koyama

ABSTRACTThe multiferroic material YbMnO3 has been reported to exhibit both ferroelectric and antiferromagnetic orders in the ground state. Of these two orders, the ferroelectric order is associated with the P63/mmc-to-P63cm structural transition, which occurs around 1270 K. The interesting feature of the ferroelectric state is that a cloverleaf domain structure with a pseudo-six-fold symmetry is observed in transmission electron microscopy images with the beam incidence parallel to the hexagonal axis. To understand the origin of the formation of the cloverleaf domain structure, we have examined the crystallographic features of the ferroelectric state in YbMnO3 by transmission electron microscopy. In this study, particularly, we adopted the experimental condition that electron beam incidences are perpendicular to the hexagonal axis. It was, as a result, found that there existed various ferroelectric domain structures including the cloverleaf domain structure under the present condition. The notable feature of domain structures found in this study is that each domain structure basically consists of six domains, whose domain boundaries are terminated at one point. Because this feature makes us reminiscent of a discommensurate structure in an incommensurate state, we took high-resolution electron micrographs of areas including domain boundaries. Their analysis indicated that a domain boundary could be identified as a discommensuration with a phase slip of π/3. It is thus understood that the cloverleaf domain structure should be one of domain morphologies for a discommensurate structure, which is related to the break of the translational symmetry.


2015 ◽  
Vol 6 (43) ◽  
pp. 7524-7532 ◽  
Author(s):  
Le Ma ◽  
Jie Zhang ◽  
Mushtaque A. Memon ◽  
Xiaoli Sun ◽  
Huihui Li ◽  
...  

The melt recrystallization of vacuum carbon evaporated melt-drawn iPP thin films at varying melting temperature, melting time and recrystallization temperature was studied by means of transmission electron microscopy combined with electron diffraction.


1996 ◽  
Vol 03 (01) ◽  
pp. 1191-1194 ◽  
Author(s):  
MASASHI ARITA ◽  
ISAO NISHIDA

Crystal defects of A15 small particles in tungsten thin films were studied by means of transmission electron microscopy. Defects found in nanoscale crystals were analyzed to have special structure containing the Zr4Al3-type structure unit.


2007 ◽  
Vol 14 (04) ◽  
pp. 751-754
Author(s):  
J. GAO ◽  
E. G. FU ◽  
Z. LUO ◽  
Z. WANG ◽  
D. P. YU

The microstructures in the YBa 2 Cu 3 O y films grown on Eu 2 CuO 4/ Y-ZrO 2(YSZ) buffered silicon were studied by means of transmission electron microscopy. Our effort was emphasized on the influence of the interfacial microstructures on the formation and epitaxy of the grown layer. It was found that a native Si -oxide layer ~ 5 nm was formed at the boundary between YSZ and silicon. Such an intermediate layer should be formed after the initial formation of the grown YSZ layer as the epitaxy of YSZ still remain. The epitaxy can be kept through all layers without the formation of big grain boundaries. No amorphous layers and secondary phases were observed at the interfaces of YSZ/ECO and YBCO/ECO. The results demonstrate that the crystallinity and the epitaxy of YBCO have been greatly improved by the bi-layer buffer.


2010 ◽  
Vol 16 (S2) ◽  
pp. 1396-1397
Author(s):  
CT Nelson ◽  
Y Zhang ◽  
CM Folkman ◽  
CB Eom ◽  
X Pan

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Sign in / Sign up

Export Citation Format

Share Document