Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials

2021 ◽  
Vol 38 (9) ◽  
pp. 097201
Author(s):  
Wang Li ◽  
Tian Xu ◽  
Zheng Ma ◽  
Abubakar-Yakubu Haruna ◽  
Qing-Hui Jiang ◽  
...  
2020 ◽  
Vol 188 ◽  
pp. 151-156
Author(s):  
Umasankar Rout ◽  
Sahil Tippireddy ◽  
Katharina Werbach ◽  
Padaikathan Pambannan ◽  
Gerda Rogl ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 3636-3646
Author(s):  
Manoj Kumar ◽  
Sanju Rani ◽  
Yogesh Singh ◽  
V. N. Singh

Thermoelectric is a device that converts heat into electricity. As thermodynamically it is not possible to make device which is 100 percent efficient, some amount of energy is wasted in the form of heat. Thermoelectric materials can play a major role in harnessing such waste energy. Although thermoelectric is a useful device still its efficiency is not good enough for commercialization. Therefore, lots of research have been carried out in finding out the best possible material, device geometry etc. There are thousands of papers describing various optimization processes. The present work reviews the basics of thermoelectric device parameters which determine the performance of the device and how to control these parameters for better thermoelectric efficiency. The efforts made to optimize parameters like power factor, thermal conductivity etc. have been summarized. Experimental results have been described with examples. Highest reported ZT values of various materials have been presented in this review.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Shinsuke Yamanaka ◽  
Ken Kurosaki ◽  
Anek Charoenphakdee ◽  
Hideaki Mastumoto ◽  
Hiroaki Muta

AbstractWith the goal of developing high-performance bulk thermoelectric materials, we have characterized ternary silver thallium tellurides. The ternary silver thallium tellurides exhibit extremely low thermal conductivity (<0.5 Wm−1K−1) and consequently their thermoelectric performance is excellent. Although the extremely low thermal conductivity materials, as typified by the ternary silver thallium tellurides, would be a new class of next-generation thermoelectric materials, thallium compounds are unsuitable for practical application because of their toxicity. Against such a background, we are currently exploring thallium-free thermoelectric materials with extremely low thermal conductivity. In this paper, we will briefly summarize the thermoelectric properties of ternary thallium tellurides obtained in our group. Further experiments aimed at improving the ZT of these materials will be presented. Finally, we will propose two candidates: Ag8GeTe6 and Ga2Te3 as thallium-free low thermal conductivity materials.


2020 ◽  
Vol 93 (11) ◽  
Author(s):  
Neophytos Neophytou ◽  
Vassilios Vargiamidis ◽  
Samuel Foster ◽  
Patrizio Graziosi ◽  
Laura de Sousa Oliveira ◽  
...  

Abstract The field of thermoelectric materials has undergone a revolutionary transformation over the last couple of decades as a result of the ability to nanostructure and synthesize myriads of materials and their alloys. The ZT figure of merit, which quantifies the performance of a thermoelectric material has more than doubled after decades of inactivity, reaching values larger than two, consistently across materials and temperatures. Central to this ZT improvement is the drastic reduction in the material thermal conductivity due to the scattering of phonons on the numerous interfaces, boundaries, dislocations, point defects, phases, etc., which are purposely included. In these new generation of nanostructured materials, phonon scattering centers of different sizes and geometrical configurations (atomic, nano- and macro-scale) are formed, which are able to scatter phonons of mean-free-paths across the spectrum. Beyond thermal conductivity reductions, ideas are beginning to emerge on how to use similar hierarchical nanostructuring to achieve power factor improvements. Ways that relax the adverse interdependence of the electrical conductivity and Seebeck coefficient are targeted, which allows power factor improvements. For this, elegant designs are required, that utilize for instance non-uniformities in the underlying nanostructured geometry, non-uniformities in the dopant distribution, or potential barriers that form at boundaries between materials. A few recent reports, both theoretical and experimental, indicate that extremely high power factor values can be achieved, even for the same geometries that also provide ultra-low thermal conductivities. Despite the experimental complications that can arise in having the required control in nanostructure realization, in this colloquium, we aim to demonstrate, mostly theoretically, that it is a very promising path worth exploring. We review the most promising recent developments for nanostructures that target power factor improvements and present a series of design ‘ingredients’ necessary to reach high power factors. Finally, we emphasize the importance of theory and transport simulations for materialoptimization, and elaborate on the insight one can obtain from computational tools routinely used in the electronic device communities. Graphical abstract


2016 ◽  
Vol 257 ◽  
pp. 156-159
Author(s):  
Norifusa Satoh

The high performance thermoelectric materials consist of heavy atoms due to their low thermal conductivity. However, the atomic properties have limited the thermoelectric power. The paper suggests that oxide may change the situation with a phononic crystal structure to inhibit heat transport.


RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 14415-14421
Author(s):  
Changhoon Lee ◽  
Sujee Kim ◽  
Won-Joon Son ◽  
Ji-Hoon Shim ◽  
Myung-Hwan Whangbo

The ternary selenides A2Sb4Se8 (A = K, Rb, Cs) are predicted to be a high-performance n-type thermoelectric material, and the conformationally-flexible Sb–Se(2)–Se(2)–Sb bridges are crucial in determining the thermoelectric properties of A2Sb4Se8.


Author(s):  
Wenwu Shi ◽  
Nina Ge ◽  
Xinzhong Wang ◽  
Zhiguo Wang

Low thermal conductivity and high power factor are essential for the efficient thermoelectric materials. The lattice thermal conductivity can be reduced by reducing the dimension of materials, thus improving the...


2009 ◽  
Vol 1166 ◽  
Author(s):  
Mildred Dresselhaus ◽  
Gang Chen ◽  
Zhifeng Ren ◽  
Kenneth McEnaney ◽  
G. Dresselhaus ◽  
...  

AbstractThe concept of using nanocomposite thermoelectric materials in bulk form for practical applications is presented. Laboratory studies have shown the possibilities of nanostructures to yield large reductions in the thermal conductivity while at the same time increasing the power factor. Theoretical studies have suggested that structural ordering in nano-systems is not necessary for the enhancement of ZT, leading to the idea of using nanocomposites as a practical scale-up technology for making bulk thermoelectric materials with enhanced ZT values. Specific examples are presented of nanocomposite thermoelectric materials developed by our group based on the familiar silicon germanium system, showing enhanced thermoelectric performance through nano-structuring.


Sign in / Sign up

Export Citation Format

Share Document