Analytic modeling of temperature dependence of 2D carrier mobility in as-grown and annealed GaInNAs/GaAs quantum well structures

2014 ◽  
Vol 29 (12) ◽  
pp. 125009 ◽  
Author(s):  
O Donmez ◽  
F Sarcan ◽  
S B Lisesivdin ◽  
M P Vaughan ◽  
A Erol ◽  
...  
2005 ◽  
Vol 490 (2) ◽  
pp. 161-164 ◽  
Author(s):  
A. Caballero-Rosas ◽  
C. Mejía-García ◽  
G. Contreras-Puente ◽  
M. López-López

1990 ◽  
Vol 12 (5) ◽  
pp. 417-422 ◽  
Author(s):  
M Colocci ◽  
M Gurioli ◽  
A Vinattieri ◽  
F Fermi ◽  
C Deparis ◽  
...  

2003 ◽  
Vol 798 ◽  
Author(s):  
Madalina Furis ◽  
Alexander N. Cartwright ◽  
Hong Wu ◽  
William J. Schaff

ABSTRACTThe need for efficient UV emitting semiconductor sources has prompted the study of a number of heterostructures of III-N materials. In this work, the temperature dependence of the photoluminescence (PL) properties of UV-emitting GaN/AlN multiple quantum well (MQW) heterostructures were investigated in detail. In all samples studied, the structure consisted of 20 GaN quantum wells, with well widths varying between 7 and 15 Å, clad by 6nm AlN barriers, grown on top of a thick AlN buffer that was deposited on sapphire by molecular beam epitaxy. The observed energy corresponding to the peak of the emission spectrum is in agreement with a model that includes the strong confinement present in these structures and the existence of the large built-in piezoelectric field and spontaneous polarization present inside the wells. The observed emission varies from 3.5 eV (15 Å well) to 4.4 eV (7 Å well). Two activation energies associated with the photoluminescence quenching are extracted from the temperature dependence of the time-integrated PL intensity. These activation energies are consistent with donor and acceptor binding energies and the PL is dominated by recombination involving carriers localized on donor and/or acceptor states.Moreover, the temperature dependence of the full width at half-maximum (FWHM) of the PL feature indicates that inhomogeneous broadening dominates the spectrum at all temperatures. For the 15 and 13 Å wells, we estimate that the electron-phonon interaction is responsible for less than 30% of the broadening at room temperature. This broadening is negligible in the 9 Å wells over the entire temperature range studied. Well width fluctuations are primarily responsible for the inhomogeneous broadening, estimated to be of the order of 250meV for one monolayer fluctuation in well width.


1997 ◽  
Vol 82 (3) ◽  
pp. 1336-1344 ◽  
Author(s):  
Yoshihiro Ishitani ◽  
Shigekazu Minagawa ◽  
Hiroshi Hamada ◽  
Toshiaki Tanaka

1985 ◽  
Vol 24 (Part 1, No. 3) ◽  
pp. 369-370 ◽  
Author(s):  
Tadaki Miyoshi ◽  
Yoshinobu Aoyagi ◽  
Yusaburo Segawa ◽  
Susumu Namba

Sign in / Sign up

Export Citation Format

Share Document