The construction of exact rational solutions with constant asymptotic values at infinity of two-dimensional NVN integrable nonlinear evolution equations via the $\overline{\partial}$-dressing method

2001 ◽  
Vol 34 (9) ◽  
pp. 1837-1851 ◽  
Author(s):  
V G Dubrovsky ◽  
I B Formusatik
2001 ◽  
Vol 56 (12) ◽  
pp. 816-824 ◽  
Author(s):  
Zhenya Yan

Abstract In this paper we firstly improve the homogeneous balance method due to Wang, which was only used to obtain single soliton solutions of nonlinear evolution equations, and apply it to (2 + 1)-dimensional Broer-Kaup (BK) equations such that a Backlund transformation is found again. Considering further the obtained Backlund transformation, the relations are deduced among BK equations, well-known Burgers equations and linear heat equations. Finally, abundant multiple soliton-like solutions and infinite rational solutions are obtained from the relations.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Mohamed S. Osman

AbstractThe Korteweg-de Vries equation (KdV) and the (2+ 1)-dimensional Nizhnik-Novikov-Veselov system (NNV) are presented. Multi-soliton rational solutions of these equations are obtained via the generalized unified method. The analysis emphasizes the power of this method and its capability of handling completely (or partially) integrable equations. Compared with Hirota’s method and the inverse scattering method, the proposed method gives more general exact multi-wave solutions without much additional effort. The results show that, by virtue of symbolic computation, the generalized unified method may provide us with a straightforward and effective mathematical tool for seeking multi-soliton rational solutions for solving many nonlinear evolution equations arising in different branches of sciences.


Author(s):  
Piotr Rozmej ◽  
Anna Karczewska

AbstractThe authors of the paper “Two-dimensional third-and fifth-order nonlinear evolution equations for shallow water waves with surface tension” Fokou et al. (Nonlinear Dyn 91:1177–1189, 2018) claim that they derived the equation which generalizes the KdV equation to two space dimensions both in first and second order in small parameters. Moreover, they claim to obtain soliton solution to the derived first-order (2+1)-dimensional equation. The equation has been obtained by applying the perturbation method Burde (J Phys A: Math Theor 46:075501, 2013) for small parameters of the same order. The results, if correct, would be significant. In this comment, it is shown that the derivation presented in Fokou et al. (Nonlinear Dyn 91:1177–1189, 2018) is inconsistent because it violates fundamental properties of the velocity potential. Therefore, the results, particularly the new evolution equation and the dynamics that it describes, bear no relation to the problem under consideration.


2011 ◽  
Vol 66 (1-2) ◽  
pp. 33-39 ◽  
Author(s):  
Sheng Zhang ◽  
Ying-Na Sun ◽  
Jin-Mei Ba ◽  
Ling Dong

A modified (Gʹ/G)-expansion method is proposed to construct exact solutions of nonlinear evolution equations. To illustrate the validity and advantages of the method, the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama (YTSF) equation is considered and more general travelling wave solutions are obtained. Some of the obtained solutions, namely hyperbolic function solutions, trigonometric function solutions, and rational solutions contain an explicit linear function of the variables in the considered equation. It is shown that the proposed method provides a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document