Normal ordering for the deformed Heisenberg algebra involving the reflection operator

2005 ◽  
Vol 38 (11) ◽  
pp. 2305-2310 ◽  
Author(s):  
Č Burdík ◽  
O Navrátil
Author(s):  
Stjepan Meljanac ◽  
◽  
Rina Štrajn ◽  
◽  
◽  
...  

We consider a class of exponentials in the Weyl-Heisenberg algebra with exponents of type at most linear in coordinates and arbitrary functions of momenta. They are expressed in terms of normal ordering where coordinates stand to the left from momenta. Exponents appearing in normal ordered form satisfy differential equations with boundary conditions that could be solved perturbatively order by order. Two propositions are presented for the Weyl-Heisenberg algebra in 2 dimensions and their generalizations in higher dimensions. These results can be applied to arbitrary noncommutative spaces for construction of star products, coproducts of momenta and twist operators. They can also be related to the BCH formula.


1996 ◽  
Vol 11 (37) ◽  
pp. 2953-2964 ◽  
Author(s):  
MIKHAIL S. PLYUSHCHAY

It is shown that the deformed Heisenberg algebra involving the reflection operator R (R-deformed Heisenberg algebra) has finite-dimensional representations which are equivalent to representations of para-Grassmann algebra with a special differentiation operator. Guon-like form of the algebra, related to the generalized statistics, is found. Some applications of revealed representations of the R-deformed Heisenberg algebra are discussed in the context of OSp(2|2) supersymmetry. It is shown that these representations can be employed for realizing (2+1)-dimensional supersymmetry. They also give a possibility to construct a universal spinor set of linear differential equations describing either fractional spin fields (anyons) or ordinary integer and half-integer spin fields in 2+1 dimensions.


1989 ◽  
Vol 75 (1) ◽  
pp. 315-321
Author(s):  
Michel Cahen ◽  
Christian Ohn
Keyword(s):  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Stefano Baiguera ◽  
Troels Harmark ◽  
Nico Wintergerst

Abstract We consider limits of $$ \mathcal{N} $$ N = 4 super Yang-Mills (SYM) theory that approach BPS bounds and for which an SU(1,1) structure is preserved. The resulting near-BPS theories become non-relativistic, with a U(1) symmetry emerging in the limit that implies the conservation of particle number. They are obtained by reducing $$ \mathcal{N} $$ N = 4 SYM on a three-sphere and subsequently integrating out fields that become non-dynamical as the bounds are approached. Upon quantization, and taking into account normal-ordering, they are consistent with taking the appropriate limits of the dilatation operator directly, thereby corresponding to Spin Matrix theories, found previously in the literature. In the particular case of the SU(1,1—1) near-BPS/Spin Matrix theory, we find a superfield formulation that applies to the full interacting theory. Moreover, for all the theories we find tantalizingly simple semi-local formulations as theories living on a circle. Finally, we find positive-definite expressions for the interactions in the classical limit for all the theories, which can be used to explore their strong coupling limits. This paper will have a companion paper in which we explore BPS bounds for which a SU(2,1) structure is preserved.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1309
Author(s):  
Jerzy Lukierski

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed D=4 quantum inhomogeneous conformal Hopf algebras Uθ(su(2,2)⋉T4) and Uθ¯(su(2,2)⋉T¯4), where T4 describes complex twistor coordinates and T¯4 the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of D=4 Heisenberg-conformal algebra (HCA) su(2,2)⋉Hℏ4,4 (Hℏ4,4=T¯4⋉ℏT4 is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length λp, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in Hℏ4,4. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra Uθ(su(2,2)⋉T4).


2005 ◽  
Vol 610 (1-2) ◽  
pp. 147-151 ◽  
Author(s):  
R. D'Auria ◽  
S. Ferrara ◽  
M. Trigiante ◽  
S. Vaulà

Sign in / Sign up

Export Citation Format

Share Document