scholarly journals Transport properties, giant moments and nearly magnetic impurities in some nickel alloys near the magnetic transition

1975 ◽  
Vol 5 (7) ◽  
pp. 1342-1358 ◽  
Author(s):  
A Amamou ◽  
F Gautier ◽  
B Loegel
2012 ◽  
Vol 501 ◽  
pp. 309-313 ◽  
Author(s):  
Siti Nurdalila Abd-Ghani ◽  
Roslan Abd-Shukor ◽  
Wei Kong

The effects of nano particles Fe3O4 addition on the superconducting and transport properties of YBa2Cu3O7-δ (YBCO) were studied. YBa2Cu3O7-δ superconductor powders were prepared by using high purity oxide powders via solid state reaction method. Nano Fe3O4 with 0.01 – 0.05 wt.% with average size 28 nm was added into YBCO. The transition temperatures (Tc) of the samples were measured by using four point probe method. The critical current (Ic) of the samples has been determined by using the 1 μV/cm criterion from 30 – 77 K. Sample with 0.02 wt.% nano Fe3O4 showed the highest Tc at 87 K. It is interesting to note the same sample also exhibited the highest Jc at 77 K up to 1683 mA/cm2. Nano Fe3O4 has acted as effective flux pinning centers in YBCO. A small amount of nano particles Fe3O4 addition has successfully improved the superconducting and transport properties of YBCO. The excessive addition of nano Fe3O4 (> 0.02 wt.%) suppressed the Tc and Jc. Overall, Jc decreases with increasing temperature (30 – 77 K) as a consequence of thermally activated flux creep. Magnetic impurities normally suppress superconductivity. However, by adding magnetic nano particles, current carrying capacity of superconductors YBCO was enhanced significantly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Meinero ◽  
P. Bonfà ◽  
I. J. Onuorah ◽  
S. Sanna ◽  
R. De Renzi ◽  
...  

AbstractThe electronic ground state of iron-based materials is unusually sensitive to electronic correlations. Among others, its delicate balance is profoundly affected by the insertion of magnetic impurities in the FeAs layers. Here, we address the effects of Fe-to-Mn substitution in the non-superconducting Sm-1111 pnictide parent compound via a comparative study of SmFe$$_{1-x}$$ 1 - x Mn$$_{x}$$ x AsO samples with $$x(\text{Mn})=$$ x ( Mn ) = 0.05 and 0.10. Magnetization, Hall effect, and muon-spin spectroscopy data provide a coherent picture, indicating a weakening of the commensurate Fe spin-density-wave (SDW) order, as shown by the lowering of the SDW transition temperature $$T_\text{SDW}$$ T SDW with increasing Mn content, and the unexpected appearance of another magnetic order, occurring at $$T^{*} \approx 10$$ T ∗ ≈ 10 and 20 K for $$x=0.05$$ x = 0.05 and 0.10, respectively. We attribute the new magnetic transition at $$T^{*}$$ T ∗ , occurring well inside the SDW phase, to a reorganization of the Fermi surface due to Fe-to-Mn substitutions. These give rise to enhanced magnetic fluctuations along the incommensurate wavevector $$\varvec{Q}_2 =(\pi \pm \delta ,\pi \pm \delta )$$ Q 2 = ( π ± δ , π ± δ ) , further increased by the RKKY interactions among Mn impurities.


2013 ◽  
Vol 27 (15) ◽  
pp. 1362036 ◽  
Author(s):  
LI LV ◽  
MIN ZHANG ◽  
ZHANTAO WEI ◽  
LINQIN YANG ◽  
XISHENG YANG ◽  
...  

The transport properties of magnetic-atoms doped Mn x Bi 2-x Se 3 single crystals are studied. The samples exhibit approximately similar temperature dependence of resistivity behavior under various applied magnetic fields from zero to 9 T. Magnetoresistance (MR) is modified significantly by high concentration of Mn dopants. The scatterings mechanism between the magnetic impurities and electrons plays an important role in both transport properties and MR effect.


2007 ◽  
Vol 561-565 ◽  
pp. 557-562 ◽  
Author(s):  
Ying Sun ◽  
Cong Wang ◽  
Yong Chun Wen

Mn3GaN has anti-perovskite structure and there exists an abnormal thermal expansion behavior in accompanying with a magnetic transition and variation of electronic transport properties. Substitution of Ga by Ge(Si) induces the change of the thermal expansion properties and the corresponding temperature range. The structure, heat capacity, magnetic and electronic transport properties of Mn3Ga(Ge,Si)N were investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document