A shallow water model with eddy viscosity for basins with varying bottom topography

Nonlinearity ◽  
2001 ◽  
Vol 14 (6) ◽  
pp. 1493-1515 ◽  
Author(s):  
C David Levermore ◽  
Marco Sammartino
2016 ◽  
Vol 145 (1) ◽  
pp. 97-116 ◽  
Author(s):  
Douglas R. Allen ◽  
Craig H. Bishop ◽  
Sergey Frolov ◽  
Karl W. Hoppel ◽  
David D. Kuhl ◽  
...  

Abstract An ensemble-based tangent linear model (TLM) is described and tested in data assimilation experiments using a global shallow-water model (SWM). A hybrid variational data assimilation system was developed with a 4D variational (4DVAR) solver that could be run either with a conventional TLM or a local ensemble TLM (LETLM) that propagates analysis corrections using only ensemble statistics. An offline ensemble Kalman filter (EnKF) is used to generate and maintain the ensemble. The LETLM uses data within a local influence volume, similar to the local ensemble transform Kalman filter, to linearly propagate the state variables at the central grid point. After tuning the LETLM with offline 6-h forecasts of analysis corrections, cycling experiments were performed that assimilated randomly located SWM height observations, based on a truth run with forced bottom topography. The performance using the LETLM is similar to that of the conventional TLM, suggesting that a well-constructed LETLM could free 4D variational methods from dependence on conventional TLMs. This is a first demonstration of the LETLM application within a context of a hybrid-4DVAR system applied to a complex two-dimensional fluid dynamics problem. Sensitivity tests are included that examine LETLM dependence on several factors including length of cycling window, size of analysis correction, spread of initial ensemble perturbations, ensemble size, and model error. LETLM errors are shown to increase linearly with correction size in the linear regime, while TLM errors increase quadratically. As nonlinearity (or forecast model error) increases, the two schemes asymptote to the same solution.


2012 ◽  
Vol 42 (10) ◽  
pp. 1729-1740 ◽  
Author(s):  
R. J. Greatbatch ◽  
P. Brandt ◽  
M. Claus ◽  
S.-H. Didwischus ◽  
Y. Fu

Abstract The equatorial deep jets (EDJ) are a striking feature of the equatorial ocean circulation. In the Atlantic Ocean, the EDJ are associated with a vertical scale of between 300 and 700 m, a time scale of roughly 4.5 years, and upward energy propagation to the surface. It has been found that the meridional width of the EDJ is roughly 1.5 times larger than expected based on their vertical scale. Here, the authors use a shallow-water model for a high-order baroclinic vertical normal mode to argue that mixing of momentum along isopycnals can explain the enhanced width. A lateral eddy viscosity of 300 m2 s−1 is found to be sufficient to account for the width implied by observations.


2019 ◽  
Vol 53 (4) ◽  
pp. 1391-1432 ◽  
Author(s):  
Raimund Bürger ◽  
Enrique D. Fernández-Nieto ◽  
Víctor Osores

A multilayer shallow water approach for the approximate description of polydisperse sedimentation in a viscous fluid is presented. The fluid is assumed to carry finely dispersed solid particles that belong to a finite number of species that differ in density and size. These species segregate and form areas of different composition. In addition, the settling of particles influences the motion of the ambient fluid. A distinct feature of the new approach is the particular definition of the average velocity of the mixture. It takes into account the densities of the solid particles and the fluid and allows us to recover the global mass conservation and linear momentum balance laws of the mixture. This definition motivates a modification of the Masliyah–Lockett–Bassoon (MLB) settling velocities of each species. The multilayer shallow water model allows one to determine the spatial distribution of the solid particles, the velocity field, and the evolution of the free surface of the mixture. The final model can be written as a multilayer model with variable density where the unknowns are the average velocities and concentrations in each layer, the transfer terms across each interface, and the total mass. An explicit formula of the transfer terms leads to a reduced form of the system. Finally, an explicit bound of the minimum and maximum eigenvalues of the transport matrix of the system is utilized to design a Harten–Lax–van Leer (HLL)-type path-conservative numerical method. Numerical simulations illustrate the coupled polydisperse sedimentation and flow fields in various scenarios, including sedimentation in a type of basin that is used in practice in mining industry and in a basin whose bottom topography gives rise to recirculations of the fluid and high solids concentrations.


2020 ◽  
Vol 32 (12) ◽  
pp. 124117
Author(s):  
M. W. Harris ◽  
F. J. Poulin ◽  
K. G. Lamb

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2054
Author(s):  
Naoki Kuroda ◽  
Katsuhide Yokoyama ◽  
Tadaharu Ishikawa

Our group has studied the spatiotemporal variation of soil and water salinity in an artificial salt marsh along the Arakawa River estuary and developed a practical model for predicting soil salinity. The salinity of the salt marsh and the water level of a nearby channel were measured once a month for 13 consecutive months. The vertical profile of the soil salinity in the salt marsh was measured once monthly over the same period. A numerical flow simulation adopting the shallow water model faithfully reproduced the salinity variation in the salt marsh. Further, we developed a soil salinity model to estimate the soil salinity in a salt marsh in Arakawa River. The vertical distribution of the soil salinity in the salt marsh was uniform and changed at almost the same time. The hydraulic conductivity of the soil, moreover, was high. The uniform distribution of salinity and high hydraulic conductivity could be explained by the vertical and horizontal transport of salinity through channels burrowed in the soil by organisms. By combining the shallow water model and the soil salinity model, the soil salinity of the salt marsh was well reproduced. The above results suggest that a stable brackish ecotone can be created in an artificial salt marsh using our numerical model as a design tool.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


Sign in / Sign up

Export Citation Format

Share Document