Tensile fracture behaviour of RE-123 coated conductors induced by discontinuous yielding in Hastelloy C-276 substrate

2005 ◽  
Vol 18 (12) ◽  
pp. S344-S350 ◽  
Author(s):  
M Sugano ◽  
K Osamura ◽  
W Prusseit ◽  
R Semerad ◽  
K Itoh ◽  
...  
2015 ◽  
Vol 6 (5) ◽  
pp. 567-577
Author(s):  
Halil Ibrahim Ünal ◽  
Hakan Atapek ◽  
Baran Gürkan Beleli ◽  
Seyda Polat ◽  
Serap Gümüs ◽  
...  

Purpose – The purpose of this paper is to investigate the fracture of grade X42 microalloyed steel used as pipe material after tensile test at room temperature and impact tests at 0, −20 and −40°C, respectively. Design/methodology/approach – In the first stage of the study, X42 steels in the form of sheet and pipe materials were selected and etched samples were characterized using light microscope. In the second stage, mechanical properties of steels were obtained by microhardness measurements, static tensile and impact tests and all the broken surfaces were examined by scanning electron microscope to determine the fracture type as a function of both microstructure and loading. Findings – The examinations revealed that: first, the sheet material had a typical ferritic-pearlitic matrix, second, the transverse section of the sheet steel exhibited a matrix consisting of polygonal ferrite-aligned pearlite colonies and the longitudinal one had elongated ferrite phase and pearlite colonies in the direction of rolling, third, ferrite and pearlite distribution was different from the sheet material due to multiaxial deformation in the pipe material, fourth, tensile fracture surfaces of the steels had typical dimple fracture induced by microvoid coalescence, fifth, impact fracture surfaces of the steels changed as a function of the test temperature and cleavage fracture mode of ferritic-pearlitic matrix became more dominant as the temperature decreased, and sixth, grain morphology had an effect on the fracture behavior of the steels. Originality/value – The paper explains the fracture behaviour of X42 microalloyed pipeline steel and its fractographical analysis.


2020 ◽  
pp. 1-11
Author(s):  
Giulia Forlati ◽  
Paul Shepley

Sinkholes in clay soils can be considered as the collapse of a soil layer previously bridging a void. Here, flexural deformation in the clay drives the formation of tensile cracks from the lowest surface of the layer and the consequent soil collapse is from crack propagation. Considering a simplified model of the sinkhole geometry, this paper aims to describe the tensile and fracture behaviour of clay soils with different plasticity indices. Speswhite kaolin, London, and Durham clays were tested using direct tensile and bending tests. Moderate- and high-plasticity clays showed a nonlinear fracture response with increasing moisture content, while low-plasticity clays demonstrated a linear response. Bending tests confirmed the importance of the moisture content while the plasticity index confirmed the difference in ductile or fragile collapse for fracture propagation. To assess the results, elasto-plastic fracture mechanics (EPFM) theory was applied to clays with appropriate modifications. The analysis demonstrated that EPFM theory provides a good baseline for predicting tensile fracture behaviour in clay soils, which can be extended in future research.


1995 ◽  
Vol 14 (12) ◽  
pp. 864-868 ◽  
Author(s):  
T. S. Srivatsan ◽  
T. S. Sudarshan

Author(s):  
A. Martín-Meizoso ◽  
J. M. Martínez-Esnaola ◽  
J. M. Scánchez ◽  
I. Puente ◽  
R. Elizalde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document