Analysis of the current-voltage characteristics and transport critical current density of superconducting YBa2Cu3O7- deltain the self-field approximation

1995 ◽  
Vol 8 (7) ◽  
pp. 497-503 ◽  
Author(s):  
A Kilic
1992 ◽  
Vol 275 ◽  
Author(s):  
S. Samajdar ◽  
Shyam K. Samanta

ABSTRACTThe transition temperature and the critical current density of a bulk YBa2Cu3O7−x-Ag microcomposite superconductive wire, prepared by powder processing followed by warm extrusion, have been measured employing the standard AC four probe technique. Measurements were performed, at 15K and zero applied field, with varying distance between the voltage contacts, while the current contacts remained a constant distance apart. It is observed that the resistance-temperature behavior remained identical in all the cases. Interestingly, the critical current density, determined from the experimentally recorded current-voltage characteristic by applying a constant electric field criterion, is seen to increase significantly, smoothly and steadily with increasing voltage tap length. However, the critical current density remains virtually unchanged if a constant voltages criterion is applied for its determination. This paradoxical dependence of critical current density, a material property, on measurement length has been explained with the help of a simple theoretical treatment, taking into account the nature of current-voltage chracteristics as well as the phenomenon of current transfer through the metallic to the superconducting ceramic phase. It is suggested that the constant electric field criterion may not be an appropriate one to use in the evaluation of critical current density of metal-ceramic superconductive composites.


2017 ◽  
Vol 30 (6) ◽  
pp. 065004 ◽  
Author(s):  
Qianjun Zhang ◽  
Xianping Zhang ◽  
Chao Yao ◽  
He Huang ◽  
Dongliang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document