Role of externally induced coherent superposition in demonstrating quantum nonlocality in a correlated emission laser

2008 ◽  
Vol 41 (24) ◽  
pp. 245503 ◽  
Author(s):  
Sintayehu Tesfa
2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Andrei Khrennikov

AbstractWe present a quantum mechanical (QM) analysis of Bell’s approach to quantum foundations based on his hidden-variable model. We claim and try to justify that the Bell model contradicts to the Heinsenberg’s uncertainty and Bohr’s complementarity principles. The aim of this note is to point to the physical seed of the aforementioned principles. This is the Bohr’s quantum postulate: the existence of indivisible quantum of action given by the Planck constant h. By contradicting these basic principles of QM, Bell’s model implies rejection of this postulate as well. Thus, this hidden-variable model contradicts not only the QM-formalism, but also the fundamental feature of the quantum world discovered by Planck.


2012 ◽  
Vol 86 (1) ◽  
Author(s):  
Zhe Sun ◽  
Jian Ma ◽  
Xiaoguang Wang ◽  
Franco Nori

2012 ◽  
Vol 26 (27n28) ◽  
pp. 1243005 ◽  
Author(s):  
THOMAS DURT

The predictions of the Quantum Theory have been verified so far with astonishingly high accuracy. Despite of its impressive successes, the theory still presents mysterious features such as the border line between the classical and quantum world, or the deep nature of quantum nonlocality. These open questions motivated in the past several proposals of alternative and/or generalized approaches. We shall discuss in the present paper alternative theories that can be infered from a reconsideration of the status of time in quantum mechanics. Roughly speaking, quantum mechanics is usually formulated as a memory free (Markovian) theory at a fundamental level, but alternative, nonMarkovian, formulations are possible, and some of them can be tested in the laboratory. In our paper we shall give a survey of these alternative proposals, describe related experiments that were realized in the past and also formulate new experimental proposals.


2016 ◽  
Vol 14 (06) ◽  
pp. 1640027 ◽  
Author(s):  
Guruprasad Kar ◽  
Manik Banik

In 1935, Albert Einstein and two colleagues, Boris Podolsky and Nathan Rosen (EPR) developed a thought experiment to demonstrate what they felt was a lack of completeness in quantum mechanics (QM). EPR also postulated the existence of more fundamental theory where physical reality of any system would be completely described by the variables/states of that fundamental theory. This variable is commonly called hidden variable and the theory is called hidden variable theory (HVT). In 1964, John Bell proposed an empirically verifiable criterion to test for the existence of these HVTs. He derived an inequality, which must be satisfied by any theory that fulfill the conditions of locality and reality. He also showed that QM, as it violates this inequality, is incompatible with any local-realistic theory. Later it has been shown that Bell’s inequality (BI) can be derived from different set of assumptions and it also find applications in useful information theoretic protocols. In this review, we will discuss various foundational as well as information theoretic implications of BI. We will also discuss about some restricted nonlocal feature of quantum nonlocality and elaborate the role of Uncertainty principle and Complementarity principle in explaining this feature.


Author(s):  
Marian Kupczynski

Bell type inequalities are proven using oversimplified probabilistic models and/or counterfactual definiteness (CFD). If setting-dependent variables describing measuring instruments are correctly introduced none of these inequalities may be proven. In spite of this a belief in a mysterious quantum nonlocality is not fading. Computer simulations of Bell tests allow studying different scenarios how the experimental data might have been created. They allow also to generate outcomes of various counterfactual experiments such as repeated or simultaneous measurements performed in different settings on the same ‘’ photon-pair” etc. They allow reinforcing or relaxing CFD- compliance and /or to study the impact of various “photon identification procedures” mimicking those used in real experiments. Using a specific setting- dependent identification procedure data samples consistent with quantum predictions may be generated. It reflects an active role of instruments during the measurement process. Each setting dependent data samples are consistent with specific setting –dependent probabilistic models which may not be deduced using non-contextual local realistic or stochastic hidden variables. In this paper we discuss the results of these simulations. Since the data samples are generated in a locally causal way, these simulations provide additional strong arguments for closing the door on quantum nonlocality


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 877 ◽  
Author(s):  
Marian Kupczynski

Bell-type inequalities are proven using oversimplified probabilistic models and/or counterfactual definiteness (CFD). If setting-dependent variables describing measuring instruments are correctly introduced, none of these inequalities may be proven. In spite of this, a belief in a mysterious quantum nonlocality is not fading. Computer simulations of Bell tests allow people to study the different ways in which the experimental data might have been created. They also allow for the generation of various counterfactual experiments’ outcomes, such as repeated or simultaneous measurements performed in different settings on the same “photon-pair”, and so forth. They allow for the reinforcing or relaxing of CFD compliance and/or for studying the impact of various “photon identification procedures”, mimicking those used in real experiments. Data samples consistent with quantum predictions may be generated by using a specific setting-dependent identification procedure. It reflects the active role of instruments during the measurement process. Each of the setting-dependent data samples are consistent with specific setting-dependent probabilistic models which may not be deduced using non-contextual local realistic or stochastic hidden variables. In this paper, we will be discussing the results of these simulations. Since the data samples are generated in a locally causal way, these simulations provide additional strong arguments for closing the door on quantum nonlocality.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 447
Author(s):  
Lev Vaidman
Keyword(s):  

The role of physics is to explain observed phenomena[...]


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


Sign in / Sign up

Export Citation Format

Share Document