Structural, electronic and magnetic properties of AgnFe clusters (n⩽ 15): local magnetic moment interacting with delocalized electrons

2011 ◽  
Vol 44 (3) ◽  
pp. 035102 ◽  
Author(s):  
Ruibin Dong ◽  
Xiaoshuang Chen ◽  
Huxian Zhao ◽  
Xiaofang Wang ◽  
Haibo Shu ◽  
...  
2011 ◽  
Vol 25 (26) ◽  
pp. 2079-2090 ◽  
Author(s):  
S. M. MONIRI ◽  
Z. NOURBAKHSH ◽  
M. MOSTAJABODAAVATI

The structural, electronic and magnetic properties of MnXY ( X = Ru , Rh and Y = Ga , Ge , Sb ) Heusler alloys are studied using density functional theory by the WIEN2k package. These materials are ferromagnetic. Also they have some interesting half-metallic properties. The electron density of states, total and local magnetic moment of these alloys are calculated. We have calculated the effective Coulomb interaction U eff using the ab initio method. We have compared the magnetic moments of these alloys in GGA and LDA + U with the Slater–Pauling rule. Furthermore the effect of hydrostatic pressure on the magnetic moment of these alloys is studied. The calculated results are fitted with a second order polynomial.


2012 ◽  
Vol 26 (09) ◽  
pp. 1250057 ◽  
Author(s):  
TONGWEI LI ◽  
ZHENJIE FENG ◽  
CHAO JING ◽  
FENG HONG ◽  
SHIXUN CAO ◽  
...  

The structural, electronic and magnetic properties of icosahedral bimetallic Ti n Mn 13-n (n = 1–12) clusters were investigated by the density-functional method. The results show that the central position is occupied by a manganese atom in the most stable structures. The total magnetic moment decreases with the increase of Ti atoms. It is interesting and important to note that, from the local magnetic moment, all Ti atoms are ferromagnetic coupling in various clusters, and most Mn atoms have the same feature. However, the spins between Ti and Mn atoms except for Ti 12 Mn 1 are anti-parallel, i.e. an antiferromagnetic couple on magnetic structure. All the above are discussed in terms of magnetic ordering theory.


RSC Advances ◽  
2018 ◽  
Vol 8 (35) ◽  
pp. 19732-19738 ◽  
Author(s):  
Jinsen Han ◽  
Dongdong Kang ◽  
Jiayu Dai

The migration and magnetic properties of the bilayer graphene with intercalation compounds (BGICs) with magnetic elements are theoretically investigated based on first principles study.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


SPIN ◽  
2019 ◽  
Vol 10 (01) ◽  
pp. 2050002 ◽  
Author(s):  
F. N. Gharbi ◽  
I. E. Rabah ◽  
M. Rabah ◽  
H. Rached ◽  
D. Rached ◽  
...  

In this paper, we investigate the structural, electronic and magnetic properties of CoFeCrZ ([Formula: see text], As,Sb) quaternary Heusler alloy, using the first-principles full potential linear muffin-tin orbital (FP-LMTO) method within the spin gradient generalized approximation (GGA) for the exchange and correlation potential. Our results demonstrate that in ferromagnetic phase, the all alloys CoFeCrZ are stable in type-1 configuration and are half-metallic ferromagnets (HMF) with gaps of 0.99[Formula: see text]eV, 0.57[Formula: see text]eV and 0.70[Formula: see text]Ev, respectively. The obtained negative formation energy shows that CoFeCrZ alloys have strong structural stability. The calculated total magnetic moment, [Formula: see text] for all alloys exhibit Slater-Pauling rule, [Formula: see text]. At zero pressure, the three alloys shown 100% spin-polarization at Fermi–level [Formula: see text] with high Curie temperatures [Formula: see text]. Our calculation indicate also that the half-metallicity and high magnetic moment of CoFeCrP, CoFeCrAs and CoFeCrSb are robust against the lattice compression (up to 7.80%, 5.40% and 11%, respectively). On the basis of these results, it is suggested that the CoFeCrZ Heusler could be suitable for spintronics devices applications.


2017 ◽  
pp. 31-36
Author(s):  
Prakash Sharma ◽  
Gopi Chandra Kaphle

Heusler alloys have been of great interest because of their application in the field of modern technological word. Electronic and magnetic properties of Co, Mn, Si and the Heusler alloy Co2MnSi have been studied using Density functional theory based Tight Binding Linear Muffin Tin Orbital with Atomic Sphere Approximation (TB-LMTO-ASA) approach. From the calculation lattice parameter of optimized structure of Co, Mn, Si and Co2MnSi are found to be 2.52A0 , 3.49A0 , 5.50A0 , 5.53A0 respectively. Band structure calculations show that Co and Mn are metallic, Si as semi-conducting while the Heusler alloy Co2MnSi as half-metallic in nature with band gap 0.29eV. The charge density plot indicates major bonds in Co2MnSi are ionic in nature. Magnetic property has been studied using the density of states (DOS), indicating that Co and Co2MnSi are magnetic with magnetic moment 2.85μB and 4.91μB respectively. The contribution of orbitals in band, DOS and magnetic moment are due to d-orbitals of Co and Mn and little from s and p-orbital of Si in Co2MnSi.The Himalayan Physics Vol. 6 & 7, April 2017 (31-36)


2016 ◽  
Vol 708 ◽  
pp. 37-41
Author(s):  
Muhammad Noor Syazwan Saimin ◽  
Siti Sumaiyah Sheikh Abdul Aziz ◽  
A.M.M. Ali ◽  
Oskar Hasdinor Hassan ◽  
Muhd Zu Azhan Yahya ◽  
...  

In this paper, the effect of substitution of Co by d-valent elements such as Ag and Pt on electronic structure and magnetic properties of full Heusler type Co2FeSi alloys was investigated. Structural study reveals the presence of a small gap in the minority band structure around the vicinity of the Fermi level on Co2FeSi resulting to half-metallic behaviour. However, CoFeSiAg and CoFeSiPt cannot preserved the half-metalicity due to disappearing of the gap in the minority band structure due to the creation of new states around the Fermi level in the minority density of states. The variation in the magnetic moment of Co2FeSi with change of the atoms was attributed to the change in the local magnetic moment of atoms.


2018 ◽  
Vol 17 (05) ◽  
pp. 1750024
Author(s):  
D. P. Rai ◽  
Sandeep ◽  
A. Shankar ◽  
P. K. Patra ◽  
R. K. Thapa

The electronic and magnetic properties of Fe atomic wire and atomic plane have been theoretically investigated from full potential linearized augmented plane wave (FPLAPW) method within a frame work of density functional theory (DFT). This work is based on the comparative study of number of Fe nanochains with infinite length and infinitely spread Fe nanosheet. A most commonly adopted GGA approximation is used for electron exchange correlation. In our calculation, the property of Fe-chain is predicted to be magnetic metal with the presence of deep valley (in Spin-up DOS) and a peak (in Spin-down DOS) at Fermi level ([Formula: see text]) shows the antisymmetric DOS. The presence of antisymmetric DOS is a signature of exchange splitting between the degenerated d-states. The splitting between t[Formula: see text] states is very prominent in Fe-chain which enhances the magnetic moment. The magnetic moment decreases with the increase in number of Fe-chains.


2011 ◽  
Vol 170 ◽  
pp. 74-77 ◽  
Author(s):  
Kazimierz Łątka ◽  
Jacek Gurgul ◽  
Andrzej W. Pacyna ◽  
Rainer Pöttgen

The results of magnetic studies and Mössbauer investigations made with 119Sn source are reviewed for the series of RERhSn (RE = Tb, Dy and Ho) compounds crystallizing in the same hexagonal ZrNiAl-type of structure. The role of crystalline electric field effects in the establishing of magnetic moment orientations observed in these compounds and their influence on the observed magnitudes of magnetic moments are discussed.


Author(s):  
Hari Krishna Neupane ◽  
Narayan Prasad Adhikari

In this work, we investigated the geometrical structures, electronic and magnetic properties of S sites vacancy defects in heterostructure graphene/molybdenum disulphide ((HS)G/MoS[Formula: see text] material by performing first-principles calculations based on spin polarized Density Functional Theory (DFT) method within van der Waals (vdW) corrections (DFT-D2) approach. All the structures are optimized and relaxed by BFGS method using computational tool Quantum ESPRESSO (QE) package. We found that both (HS)G/MoS2 and S sites vacancy defects in (HS)G/MoS2 (D1S–(HS)G/MoS2, U1S–(HS)G/MoS2, 2S–(HS)G/MoS2 and 3S–(HS)G/MoS[Formula: see text] are stable materials, and atoms in defects structures are more compact than in pristine (HS)G/MoS2 structure. From band structure calculations, we found that (HS)G/MoS2, (D1S–(HS)G/MoS2, U1S–(HS)G/MoS2, 2S–(HS)G/MoS2 and 3S–(HS)G/MoS[Formula: see text] materials have [Formula: see text]-type Schottky contact. The Dirac cone is formed in conduction band of the materials mentioned above. The barrier height of Dirac cones from Fermi energy level of (HS)G/MoS2, (D1S–(HS)G/MoS2, U1S–(HS)G/MoS2, 2S–(HS)G/MoS2 and 3S–(HS)G/MoS[Formula: see text] materials have values 0.56[Formula: see text]eV, 0.62[Formula: see text]eV, 0.62[Formula: see text]eV, 0.64[Formula: see text]eV and 0.65[Formula: see text]eV, respectively, which means they have metallic properties. To study the magnetic properties of materials, we have carried out DoS and PDoS calculations. We found that (HS)G/MoS2, D1S–(HS)G/MoS2 and U1S–(HS)G/MoS2 materials have non-magnetic properties, and 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials have magnetic properties. Therefore, the non-magnetic (HS)G/MoS2 changes to magnetic 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials due to 2S and 3S atoms vacancy defects, respectively, in (HS)G/MoS2 material. Magnetic moment obtained in 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials due to the unequal distribution of up and down spin states of electrons in 2s and 2p orbitals of C atoms; 4p, 4d and 5s orbitals of Mo atoms; and 3s and 3p orbitals of S atoms in structures. Magnetic moment of 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials is −0.11[Formula: see text][Formula: see text]/cell and [Formula: see text]/cell, respectively, and spins of 2p orbital of C atoms, 3p orbital of S atoms and 4d orbital of Mo atoms have dominant role to create magnetism in 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials.


Sign in / Sign up

Export Citation Format

Share Document