scholarly journals Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

2016 ◽  
Vol 49 (3) ◽  
pp. 034003 ◽  
Author(s):  
Matthew S Robinson ◽  
Paul D Lane ◽  
Derek A Wann
2011 ◽  
Vol 34 (1) ◽  
pp. 2-12 ◽  
Author(s):  
Clifton R. Haider ◽  
Stephen J. Riederer ◽  
Eric A. Borisch ◽  
James F. Glockner ◽  
Roger C. Grimm ◽  
...  

2016 ◽  
Vol 49 (2) ◽  
pp. 485-496 ◽  
Author(s):  
Antonios Vamvakeros ◽  
Simon D. M. Jacques ◽  
Marco Di Michiel ◽  
Pierre Senecal ◽  
Vesna Middelkoop ◽  
...  

An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy.


2006 ◽  
Vol 12 (3) ◽  
pp. 223-231 ◽  
Author(s):  
CP Stracke ◽  
E. Spuentrup ◽  
P. Reinacher ◽  
A. Thron ◽  
T. Krings

The decision for endovascular treatment of cranial dural AV fistulae and angiomas and their follow-up after treatment is usually based on conventional DSA. New techniques of magnetic resonance angiography (MRA) facilitate high temporal and spatial resolution images. The purpose of this study was to evaluate the applicability and clinical use of a newly developed 3D dynamic MRA protocol on a 3T scanner for neurointerventional planning and decision-making. Using a 3T whole body scanner, a three-dimensional dynamic contrast enhanced MRA sequence with parallel imaging, and intelligent k-space readout (Keyhole and “CENTRA” k-space filling) was added to structural MRI and time-of-flight MRA in seven patients. DSA was performed in each patient following MR examination. In all patients MRA allowed the identification and correct classification of the vascular lesion. Hemodynamic characteristics and venous architecture were clearly demonstrated. Larger feeding arteries could be identified in all cases. Smaller feeding vessels were overlooked in dynamic MRA and only depicted in conventional DSA High temporal and spatial resolution 3D MRA may correctly identify and classify fistulae and angiomas and help to reduce the number of pre- or post-interventional invasive diagnostic angiograms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yersultan Mirasbekov ◽  
Adina Zhumakhanova ◽  
Almira Zhantuyakova ◽  
Kuanysh Sarkytbayev ◽  
Dmitry V. Malashenkov ◽  
...  

AbstractA machine learning approach was employed to detect and quantify Microcystis colonial morphospecies using FlowCAM-based imaging flow cytometry. The system was trained and tested using samples from a long-term mesocosm experiment (LMWE, Central Jutland, Denmark). The statistical validation of the classification approaches was performed using Hellinger distances, Bray–Curtis dissimilarity, and Kullback–Leibler divergence. The semi-automatic classification based on well-balanced training sets from Microcystis seasonal bloom provided a high level of intergeneric accuracy (96–100%) but relatively low intrageneric accuracy (67–78%). Our results provide a proof-of-concept of how machine learning approaches can be applied to analyze the colonial microalgae. This approach allowed to evaluate Microcystis seasonal bloom in individual mesocosms with high level of temporal and spatial resolution. The observation that some Microcystis morphotypes completely disappeared and re-appeared along the mesocosm experiment timeline supports the hypothesis of the main transition pathways of colonial Microcystis morphoforms. We demonstrated that significant changes in the training sets with colonial images required for accurate classification of Microcystis spp. from time points differed by only two weeks due to Microcystis high phenotypic heterogeneity during the bloom. We conclude that automatic methods not only allow a performance level of human taxonomist, and thus be a valuable time-saving tool in the routine-like identification of colonial phytoplankton taxa, but also can be applied to increase temporal and spatial resolution of the study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Callenberg ◽  
A. Lyons ◽  
D. den Brok ◽  
A. Fatima ◽  
A. Turpin ◽  
...  

AbstractImaging across both the full transverse spatial and temporal dimensions of a scene with high precision in all three coordinates is key to applications ranging from LIDAR to fluorescence lifetime imaging. However, compromises that sacrifice, for example, spatial resolution at the expense of temporal resolution are often required, in particular when the full 3-dimensional data cube is required in short acquisition times. We introduce a sensor fusion approach that combines data having low-spatial resolution but high temporal precision gathered with a single-photon-avalanche-diode (SPAD) array with data that has high spatial but no temporal resolution, such as that acquired with a standard CMOS camera. Our method, based on blurring the image on the SPAD array and computational sensor fusion, reconstructs time-resolved images at significantly higher spatial resolution than the SPAD input, upsampling numerical data by a factor $$12 \times 12$$ 12 × 12 , and demonstrating up to $$4 \times 4$$ 4 × 4 upsampling of experimental data. We demonstrate the technique for both LIDAR applications and FLIM of fluorescent cancer cells. This technique paves the way to high spatial resolution SPAD imaging or, equivalently, FLIM imaging with conventional microscopes at frame rates accelerated by more than an order of magnitude.


The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Yassin Meklach ◽  
Chantal Camenisch ◽  
Abderrahmane Merzouki ◽  
Ricardo Garcia Herrera

Archival records and historical documents offer direct observation of weather and atmospheric conditions and have the highest temporal and spatial resolution, and precise dating, of the available climate proxies. They also provide information about variables such as temperature, precipitation and climate extremes, as well as floods, droughts and storms. The present work studied Arab-Islamic documentary sources covering the western Mediterranean region (documents written by Arab-Islamic historians that narrate social, political and religious history) available for the period AD 680–1815. They mostly provide information on hydrometeorological events. In Iberia the most intense droughts were reported during AD 747–753, AD 814–822, AD 846–847, AD 867–874 and AD 914–915 and in the Maghreb AD 867–873, AD 898–915, AD 1104–1147, AD 1280–1340 and AD 1720–1815 had prevalent drought conditions. Intense rain episodes are also reported.


Sign in / Sign up

Export Citation Format

Share Document