The evaluation of Young's modulus and residual stress of nickel films by microbridge testings

2004 ◽  
Vol 15 (12) ◽  
pp. 2389-2394 ◽  
Author(s):  
Z M Zhou ◽  
Y Zhou ◽  
C S Yang ◽  
J A Chen ◽  
G F Ding ◽  
...  
1994 ◽  
Vol 356 ◽  
Author(s):  
S. Roy ◽  
S. Furukawa ◽  
H. Miyajima ◽  
M. Mehregany

AbstractThis paper reports in situ measurement of Young’s modulus and residual stress of electroless nickel films through the use of microfabricated nickel test structures, including electrostatic microactuators and passive devices. The test structures are fabricated in a new surface micromachining process, termed “nickel surface micromachining”, using electroless plated nickel as the structural layer and polysilicon as the sacrificial layer. Subsequent to fabrication, lateral resonant-type electrostatic microactuators of different geometries are resonated by electrical excitation. Using the measured resonant frequencies and knowledge of the device geometry, the Young’s modulus of the film is determined. The passive electroless nickel microstructures deform upon completion of the fabrication process due to residual stress in the film. Measurement of this deformation in conjunction with an appropriate mechanical model is used to determine the residual stress in the films.


1999 ◽  
Vol 594 ◽  
Author(s):  
T. Y. Zhang ◽  
Y. J. Su ◽  
C. F. Qian ◽  
M. H. Zhao ◽  
L. Q. Chen

AbstractThe present work proposes a novel microbridge testing method to simultaneously evaluate the Young's modulus, residual stress of thin films under small deformation. Theoretic analysis and finite element calculation are conducted on microbridge deformation to provide a closed formula of deflection versus load, considering both substrate deformation and residual stress in the film. Silicon nitride films fabricated by low pressure chemical vapor deposition on silicon substrates are tested to demonstrate the proposed method. The results show that the Young's modulus and residual stress for the annealed silicon nitride film are respectively 202 GPa and 334.9 MPa.


2012 ◽  
Vol 18 (7-8) ◽  
pp. 945-953 ◽  
Author(s):  
Oliver Pabst ◽  
Michael Schiffer ◽  
Ernst Obermeier ◽  
Tolga Tekin ◽  
Klaus Dieter Lang ◽  
...  

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Xiaoping Huang ◽  
Torgeir Moan

Autofrettage is a practical method for increasing the elastic carrying capacity and the fatigue life of thick-walled cylinders such as cannon and high-pressure tubular reactor. Many analytical and numerical solutions for determining the residual stress distribution in an autofrettaged tube have been reported. It is still difficult to model the Bauchinger effect, which is dependent on the prior plasticity in an analytical solution. The reduced Young’s modulus during unloading affects residual stress distribution. However, until now this effect has not been considered in any analytical model. In this paper, an autofrettage analytical solution considering Young’s modulus and the reverse yield stress dependent on the prior plasticity, based on the actual tensile-compressive curve of the material and the von Mises yield criterion, has been proposed. New model incorporates the Bauschinger effect factor and the unloading modulus variation as a function of prior plastic strain, and hence of the radius. Thereafter it assumes a fixed nonlinear unloading profile. The comparison of predicted residual stress distribution by the present solution with that of fixed unloading curve model, and test results shows that the present solution gives accurate prediction of residual stress distribution of an autofrettaged tube. This analytical procedure for the cylinder permits an excellent representation of various pressure vessel steels.


2000 ◽  
Vol 657 ◽  
Author(s):  
C.-F. Qian ◽  
Y.-J. Su ◽  
M.-H. Zhao ◽  
T.-Y. Zhang

ABSTRACTThe present work further develops the microbridge testing method to characterize mechanical properties of bilayer thin films. A closed-form formula for deflection versus load under small deflection is derived with consideration of the substrate deformation and residual stress in each layer. The analysis shows that the solution for bending a bilayer beam is equivalent to that for bending a single-layer beam with an equivalent bending stiffness, an equivalent residual force and a residual moment. One can estimate the Young's modulus and residual stress in a layer if the corresponding values in the other layer are known. The analytic results are confirmed by finite element calculations. The microbridge tests are conducted on low-temperature-silicon oxide (LTO)/silicon nitride bilayer films as well as on silicon nitride single-layer films. All microbridge specimens are prepared by the microfabricating technique. The tests on the single-layer films provide the material properties of the silicon nitride films. Then, applying the proposed method for bilayer films under small deflection yields the Young's modulus of 37 GPa and the residual stress of -148 MPa for LTO films.


Sign in / Sign up

Export Citation Format

Share Document