Implementation of a micro ball lens on a silicon optical bench using insoluble two-phase liquid immersion technology

2010 ◽  
Vol 20 (8) ◽  
pp. 085015 ◽  
Author(s):  
Chih-Chun Lee ◽  
Sheng-Yi Hsiao ◽  
Weileun Fang
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1395
Author(s):  
Cheng Liu ◽  
Hang Yu

An efficient cooling system for data centers can boost the working efficiency of servers and promote energy savings. In this study, a laboratory experiment and computational fluid dynamics (CFD) simulation were performed to explore the performance of a two-phase cooling system. The coefficient of performance (COP) and partial power usage effectiveness (pPUE) of the proposed system was evaluated under various IT (Information Technology) loads. The relationship between the interval of the two submerged servers and their surface temperatures was evaluated by CFD analysis, and the minimum intervals that could maintain the temperature of the server surfaces below 85 °C were obtained. Experimental results show that as server power increases, COP increases pPUE decreases. In one experiment, the COP increased from 19.0 to 26.7, whereas pPUE decreased from 1.053 to 1.037. The exergy efficiency of this system ranges from 12.65% to 18.96%, and the tank side accounts for most of the exergy destruction. The minimum intervals between servers are 15 mm under 1000 W of power, 20 mm under 1500 W, and more than 30 mm under 2000 W and above. The observations and conclusions in this study can be valuable references for the study of cooling systems in data centers.


1992 ◽  
Vol 57 (7) ◽  
pp. 1419-1423
Author(s):  
Jindřich Weiss

New data on critical holdups of dispersed phase were measured at which the phase inversion took place. The systems studied differed in the ratio of phase viscosities and interfacial tension. A weak dependence was found of critical holdups on the impeller revolutions and on the material contactor; on the contrary, a considerable effect of viscosity was found out as far as the viscosity of continuous phase exceeded that of dispersed phase.


2021 ◽  
Vol 1047 (1) ◽  
pp. 012021
Author(s):  
Kh Sh Ilhamov ◽  
D Z Narzullaev ◽  
Sh T Ilyasov ◽  
B A Abdurakhmanov ◽  
K K Shadmanov

Sign in / Sign up

Export Citation Format

Share Document