scholarly journals Model of a turbulent flow of a two-phase liquid with an uneven distributed phase concentration in a horizontal pipe

2021 ◽  
Vol 1047 (1) ◽  
pp. 012021
Author(s):  
Kh Sh Ilhamov ◽  
D Z Narzullaev ◽  
Sh T Ilyasov ◽  
B A Abdurakhmanov ◽  
K K Shadmanov
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5201
Author(s):  
Qi Kang ◽  
Jiapeng Gu ◽  
Xueyu Qi ◽  
Ting Wu ◽  
Shengjie Wang ◽  
...  

In the petrochemical industry, multiphase flow, including oil–water two-phase stratified laminar flow, is more common and can be easily obtained through mathematical analysis. However, there is no mathematical, analytical model for the simulation of oil–water flow under turbulent flow. This paper introduces a two-dimensional (2D) numerical simulation method to investigate the pressure gradient, flow field, and oil–water interface height of a pipeline cross-section of horizontal tube in an oil–water stratified smooth flow, which has field information of a pipeline cross-section compared with a one-dimensional (1D) simulation and avoids the significant calculation required to conduct a three-dimensional (3D) simulation. Three Reynolds average N–S equation models (k−ε, k−ω, SST k−ω) are used to simulate oil–water stratified smooth flow according to the finite volume method. The pressure gradient and oil–water interface height can be computed according to the given volume flow rate using the iteration method. The predicted data of oil–water interface height and velocity profile by the model fit well with some available experiment data, except that there is a large error in pressure gradient. The SST k−ω turbulence model has higher accuracy and is more suitable for simulating oil–water two-phase stratified flow in a horizontal pipe.


1996 ◽  
Vol 6 (2) ◽  
pp. 211-225 ◽  
Author(s):  
Keh-Chin Chang ◽  
Wen-Jing Wu ◽  
Muh-Rong Wang

2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

1992 ◽  
Vol 57 (7) ◽  
pp. 1419-1423
Author(s):  
Jindřich Weiss

New data on critical holdups of dispersed phase were measured at which the phase inversion took place. The systems studied differed in the ratio of phase viscosities and interfacial tension. A weak dependence was found of critical holdups on the impeller revolutions and on the material contactor; on the contrary, a considerable effect of viscosity was found out as far as the viscosity of continuous phase exceeded that of dispersed phase.


Sign in / Sign up

Export Citation Format

Share Document