Periodic surface structures induced by femtosecond laser single pulse and pulse trains on metals

Laser Physics ◽  
2015 ◽  
Vol 25 (5) ◽  
pp. 056103 ◽  
Author(s):  
Jun Xie ◽  
Feng Wang ◽  
Lan Jiang ◽  
Liangliang Zhao ◽  
Yongfeng Lu
2012 ◽  
Vol 31 (1) ◽  
pp. 29-36 ◽  
Author(s):  
M. Trtica ◽  
D. Batani ◽  
R. Redaelli ◽  
J. Limpouch ◽  
V. Kmetik ◽  
...  

AbstractThe response of titanium surface irradiated with high intensity (1013 – 1015 W/cm2) Ti:sapphire laser was studied in vacuum. Most of the reported investigations were conducted with nano- to femtosecond lasers in gas atmospheres while the studies of titanium surface interacting with femtosecond laser in vacuum are scarce. The laser employed in our experiment was operating at 800 nm wavelength and pulse duration of 60 fs in single pulse regime. The observed surface changes and phenomena are (1) creation of craters, (2) formation of periodic surface structures at the reduced intensity, and (3) occurrence of plasma in front the target. Since microstructuring of titanium is very interesting in many areas (industry, medicine), it can be concluded from this study that the reported laser intensities can effectively be applied for micromachining of the titanium surface (increasing the roughness, formation of parallel periodic surface structures etc.).


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1836 ◽  
Author(s):  
Evgeny L. Gurevich ◽  
Yoann Levy ◽  
Nadezhda M. Bulgakova

Two different scenarios are usually invoked in the formation of femtosecond Laser-Induced Periodic Surface Structures (LIPSS), either “self-organization” mechanisms or a purely “plasmonic” approach. In this paper, a three-step model of formation of single-laser-shot LIPSS is summarized. It is based on the periodic perturbation of the electronic temperature followed by an amplification, for given spatial periods, of the modulation in the lattice temperature and a final possible relocation by hydrodynamic instabilities. An analytical theory of the evolution of the temperature inhomogeneities is reported and supported by numerical calculations on the examples of three different metals: Al, Au, and Mo. The criteria of the possibility of hydrodynamic instabilities are also discussed.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Iaroslav Gnilitskyi ◽  
Thibault J.-Y. Derrien ◽  
Yoann Levy ◽  
Nadezhda M. Bulgakova ◽  
Tomáš Mocek ◽  
...  

2019 ◽  
Vol 471 ◽  
pp. 516-520 ◽  
Author(s):  
Sohail A. Jalil ◽  
Jianjun Yang ◽  
Mohamed ElKabbash ◽  
Subhash C. Singh ◽  
Chunlei Guo

Sign in / Sign up

Export Citation Format

Share Document