scholarly journals Relativistic magnetised perturbations: magnetic pressure versus magnetic tension

2018 ◽  
Vol 35 (12) ◽  
pp. 124001 ◽  
Author(s):  
Dimitra Tseneklidou ◽  
Christos G Tsagas ◽  
John D Barrow
1981 ◽  
Vol 34 (3) ◽  
pp. 279 ◽  
Author(s):  
I Lerche

An investigation is made of the self-similar flow behind a cylindrical blast wave from a line explosion (situated on r = 0, using conventional cylindrical coordinates r, 4>, z) in a medium whose density and magnetic field both vary as r -w ahead of the blast front, with the assumption that the flow is isothermal. The magnetic field can have components in both the azimuthal B(jJ and longitudinal B, directions. It is found that: (i) For B(jJ =f:. 0 =f:. B, a continuous single-valued solution with a velocity field representing outflow of material away from the line of explosion does not exist for OJ OJ > 0 the governing equation possesses a set of movable critical points. In this case it is shown that the fluid flow velocity is bracketed between two curves and that the asymptotes of the velocity curve on the shock are intersected by, or are tangent to, the two curves. Thus a solution always exists in the physical domain r ~ o. The overall conclusion from the investigation is that the behaviour of isothermal blast waves in the presence of an ambient magnetic field differs substantially from the behaviour calculated for no magnetic field. These results have an impact upon previous applications of the theory of self-similar flows to evolving supernova remnants without allowance for the dynamical influence of magnetic pressure and magnetic tension.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Divya Sri Praturi ◽  
Sharath S. Girimaji

Abstract The goal of this study is to investigate the interactions between turbulent kinetic, internal, and magnetic energies in planar magnetohydrodynamic (MHD) jets at different regimes of Mach and Alfvén Mach numbers. Toward this end, temporal simulations of planar MHD jets are performed, using two types of initial fluctuating velocity field: (i) single velocity perturbation mode with a streamwise wavevector and (ii) random, isotropic perturbations over a band of wavevectors. At low Mach numbers, magnetic tension work results in a reversible exchange of energy between fluctuating velocity and magnetic fields. At high Alfvén Mach numbers, this exchange results in the equipartition of turbulent kinetic and magnetic energies. At higher Mach numbers, dilatational kinetic energy is (reversibly) exchanged with internal and magnetic energies, by means of pressure-dilatation and magnetic-pressure-dilatation, respectively. Therefore, at high Mach and Alfvén Mach numbers, dilatational kinetic energy is seen to be in equipartition with the sum of turbulent internal and magnetic energies. In each of the regimes, the consequent effect of the interactions on the background Kelvin–Helmholtz vortex evolution is also identified.


2012 ◽  
Vol 116 (33) ◽  
pp. 17676-17681 ◽  
Author(s):  
Z.H.I. Sun ◽  
X. Guo ◽  
M. Guo ◽  
C. Li ◽  
J. Vleugels ◽  
...  

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
T. Byvank ◽  
D. A. Endrizzi ◽  
C. B. Forest ◽  
S. J. Langendorf ◽  
K. J. McCollam ◽  
...  

We present experimental data providing evidence for the formation of transient ( ${\sim }20\ \mathrm {\mu }\textrm {s}$ ) plasmas that are simultaneously weakly magnetized (i.e. Hall magnetization parameter $\omega \tau > 1$ ) and dominated by thermal pressure (i.e. ratio of thermal-to-magnetic pressure $\beta > 1$ ). Particle collisional mean free paths are an appreciable fraction of the overall system size. These plasmas are formed via the head-on merging of two plasmas launched by magnetized coaxial guns. The ratio $\lambda _{\textrm {gun}}=\mu _0 I_{\textrm {gun}}/\psi _{\textrm {gun}}$ of gun current $I_{\textrm {gun}}$ to applied magnetic flux $\psi _{\textrm {gun}}$ is an experimental knob for exploring the parameter space of $\beta$ and $\omega \tau$ . These experiments were conducted on the Big Red Ball at the Wisconsin Plasma Physics Laboratory. The transient formation of such plasmas can potentially open up new regimes for the laboratory study of weakly collisional, magnetized, high- $\beta$ plasma physics; processes relevant to astrophysical objects and phenomena; and novel magnetized plasma targets for magneto-inertial fusion.


1977 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
N. F. Cramer

The parametric excitation of slow, intermediate (Alfvén) and fast magneto-acoustic waves by a modulated spatially non-uniform magnetic field in a plasma with a finite ratio of gas pressure to magnetic pressure is considered. The waves are excited in pairs, either pairs of the same mode, or a pair of different modes. The growth rates of the instabilities are calculated and compared with the known result for the Alfvén wave in a zero gas pressure plasma. The only waves that are found not to be excited are the slow plus fast wave pair, and the intermediate plus slow or fast wave pair (unless the waves have a component of propagation direction perpendicular to both the background magnetic field and the direction of non-uniformity of the field).


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
M. S. Ruderman ◽  
N. S. Petrukhin ◽  
E. Pelinovsky

AbstractIn this article we study the plasma motion in the transitional layer of a coronal loop randomly driven at one of its footpoints in the thin-tube and thin-boundary-layer (TTTB) approximation. We introduce the average of the square of a random function with respect to time. This average can be considered as the square of the oscillation amplitude of this quantity. Then we calculate the oscillation amplitudes of the radial and azimuthal plasma displacement as well as the perturbation of the magnetic pressure. We find that the amplitudes of the plasma radial displacement and the magnetic-pressure perturbation do not change across the transitional layer. The amplitude of the plasma radial displacement is of the same order as the driver amplitude. The amplitude of the magnetic-pressure perturbation is of the order of the driver amplitude times the ratio of the loop radius to the loop length squared. The amplitude of the plasma azimuthal displacement is of the order of the driver amplitude times $\text{Re}^{1/6}$ Re 1 / 6 , where Re is the Reynolds number. It has a peak at the position in the transitional layer where the local Alfvén frequency coincides with the fundamental frequency of the loop kink oscillation. The ratio of the amplitude near this position and far from it is of the order of $\ell$ ℓ , where $\ell$ ℓ is the ratio of thickness of the transitional layer to the loop radius. We calculate the dependence of the plasma azimuthal displacement on the radial distance in the transitional layer in a particular case where the density profile in this layer is linear.


2008 ◽  
Vol 74 (3) ◽  
pp. 391-429 ◽  
Author(s):  
G. HERDRICH ◽  
D. PETKOW

AbstractThe development of the inductively driven plasma wind tunnel PWK3, which enables the electrodeless generation of high-enthalpy plasmas for the development of heat shield materials required for space vehicles performing entry manoeuvres in the atmospheres of Venus, Earth and Mars, is described. The facility with its modular inductive plasma generators allows operation with gases such as carbon dioxide, air, oxygen and nitrogen and was qualified for thermal plasma powers up to 60 kW. Previously developed models for determining plasma properties and plasma source related characteristics enable a maximum plasma power in combination with long operational periods using different operational gases and gas mixtures. This is achieved by an optimization using the optimum operational frequency, a minimization of field losses using very thin plasma tube wall thicknesses and the successful application of MHD effects. Based on the solved cylinder problem for ICPs, a one-dimensional model for radial Lorentz forces and magnetic pressure has been developed. Here, a synthesis of previously published data and works is made where the new algebraic model for the calculation of Lorentz forces and magnetic pressures in an ICP was used and applied to experimental data. In addition, results from the model using the experimental data are shown to be consistent and, in addition, a comparison with a simpler model based on the well-known exponential approach for ICPs showed that the simpler model is covered without fail by the new model. The new model also states that there is a maximum of the Lorentz forces over the damping parameter d/δ (plasma diameter divided by skin depth) which almost corresponds with the position of the maximum plasma power of the cylindric model for ICPs. For the magnetic pressure the position of the maximum pressure is identical to the value for d/δ for the maximum plasma power.


Sign in / Sign up

Export Citation Format

Share Document