scholarly journals A derivation of the Doppler factor in the Liénard-Wiechert potentials

Author(s):  
Călin Galeriu
Keyword(s):  
2018 ◽  
Vol 618 ◽  
pp. A175
Author(s):  
F. D’Ammando ◽  
M. Giroletti ◽  
S. Rainó

Aims. We are studying an unbiased sample of 42 nearby (z < 0.2) BL Lacertae objects with a multi-wavelength approach. The results of Very Long Baseline Interferometry observations were presented in the first paper of this series. In this paper, we study the γ-ray properties of the sample. Methods. We analyse data collected by the Fermi-Large Area Telescope (LAT) during its first 8.5 yr of operation in the energy range 0.1−300 GeV. Results. We reveal 23 sources with a test statistic greater than 25 (corresponding to ~4.6-σ) out of 42, with 3 sources not detected in the third LAT active galactic nucleus (AGN) catalogue, and fluxes between 3.5 × 10−10 and 7.4 × 10−8 ph cm−2 s−1. The majority of the sources have hard spectra (Γ ≤ 2), with only four having values in the range 2.1–2.4. The three newly detected sources have fluxes in the range between 0.54 × 10−9 and 1.35 × 10−9 ph cm−2 s−1 and photon index 1.7–1.9. Among the 23 LAT-detected sources, 19 are included in the third catalogue of hard Fermi-LAT sources, with a spectrum that connects relatively smoothly from 0.1 GeV to 2 TeV. LAT-detected BL Lacs are more luminous on parsec scales with respect to non-LAT-detected sources and have larger core dominance according to the unified models. Conclusions. The LAT-detected BL Lacs seem to be composed of a bulk of “classical” sources dominated by Doppler boosting and characterised by compact and bright radio emission as well as hard γ-ray spectra. Moreover, we have identified a possible population of low-luminosity BL Lacs not detected by LAT, lacking a VLBI core, and with a small Doppler factor. Furthermore, three LAT-detected sources show non-classical properties for γ-ray emitting BL Lacs (no evidence of relativistic jet, low Doppler factor in radio images, relatively low core dominance) and three other sources, while showing radio emission on parsec scales, are not detected in γ rays so far.


1998 ◽  
Vol 164 ◽  
pp. 47-48 ◽  
Author(s):  
Z. Abraham ◽  
E.A. Carrara ◽  
J.A. Zensus

AbstractThe parsec scale radio jet of 3C 279 presents a number of superluminal features that move along straight trajectories with constant velocities. The position angles P.A. of these trajectories, projected in the plane of the sky, and the velocities βobs of the individual components are different. We interpret the differences in the these velocities as differences in the angle between the jet and the line of sight and apply the model of a precessing beam to the data. All the geometrical parameters of the precessing jet and the Lorentz factor γ of the relativistic particles are determined. The model predicts the behavior of the Doppler factor δ as a function of time and we verify that its maximum value occurred at the epochs in which strong optical and X-ray flares were observed.


Author(s):  
Zhiyuan Pei ◽  
Junhui Fan ◽  
Jianghe Yang ◽  
Denis Bastieri

Abstract Blazars are a subclass of active galactic nuclei with extreme observation properties, which is caused by the beaming effect, expressed by a Doppler factor ( $\delta$ ), in a relativistic jet. Doppler factor is an important parameter in the blazars paradigm to indicate all of the observation properties, and many methods were proposed to estimate its value. In this paper, we present a method following Mattox et al. to calculate the lower limit on $\gamma$ -ray Doppler factor ( $\delta_{\gamma}$ ) for 809 selected Fermi/LAT-detected $\gamma$ -ray blazars by adopting the available $\gamma$ -ray and X-ray data. Our sample included 342 flat-spectrum radio quasars (FSRQs) and 467 BL Lac objects (BL Lacs), out of which 507 sources are compiled with available radio core-dominance parameter (R) from our previous study. Our calculation shows that the average values of the lower limit on $\delta_{\gamma}$ for FSRQs and BL Lacs are $\left\langle\delta_{\gamma}|_{\textrm{FSRQ}}\right\rangle = 6.87 \pm 4.07$ and $\left\langle\delta_{\gamma}|_{\textrm{BL\ Lac}}\right\rangle=4.31 \pm 2.97$ , respectively. We compare and discuss our results with those from the literature. We found that the derived lower limit on $\delta_{\gamma}$ for some sources is higher than that from the radio estimation, which could be possibly explained by the jet bending within those blazars. Our results also suggest that the $\gamma$ -ray and radio regions perhaps share the same relativistic effects. The $\gamma$ -ray Doppler factor has been found to be correlated with both the $\gamma$ -ray luminosity and core-dominance parameter, implying that the jet is possibly continuous in the $\gamma$ -ray bands, and R is perhaps an indicator for a beaming effect.


2014 ◽  
Vol 35 (3) ◽  
pp. 485-486
Author(s):  
J. Tao ◽  
J. H. Fan ◽  
H. J. Pan ◽  
D. X. Wu ◽  
S. H. Li

1997 ◽  
Vol 163 ◽  
pp. 695-696 ◽  
Author(s):  
Erick. J. Guerra ◽  
Ruth A. Daly

AbstractRelativistic outflows from AGN can be parameterized by θ, the angle subtended by the direction of the outflow and the line of sight to the observer, and γ, the bulk Lorentz factor of the outflow. The Doppler factor, δ, and the apparent speed in the plane of the sky, βapp, are combinations of θ and γ. The Doppler factor can be estimated using either the equipartition Doppler factor, δeq (Readhead 1994), or the inverse Compton Doppler factor, δIC. These Doppler factor estimates are combined with observed βapp to solve for θ and γ for different categories of AGN.Ghisellini et al. (1993) compute δIC for 105 compact radio sources, and Güijosa & Daly (1996) compute δeq for the same sample. Daly, Guerra, & Güijosa (1996) estimate θ and γ for the 43 sources that have βapp listed by Vermeulen & Cohen (1994) and δeq computed by Güijosa & Daly (1996).Solutions and errors for θ and γ are presented in Figures 1 and 2 using δeq and δIC respectively. Guerra & Daly (1996) discuss these estimates and errors in greater detail. These AGN fall into the following categories: BL Lacertae objects (BL Lacs), core-dominated high-polarization quasars (CDHPQ), core-dominated low-polarization quasars (CDLPQ), core-dominated quasars with no polarization information (CDQ(NPI)), lobe-dominated quasars (LDQ), and radio galaxies (RG).


2020 ◽  
Vol 897 (1) ◽  
pp. 10 ◽  
Author(s):  
Lixia Zhang ◽  
Sina Chen ◽  
Hubing Xiao ◽  
Jinting Cai ◽  
Junhui Fan

2014 ◽  
Vol 28 ◽  
pp. 1460177
Author(s):  
LUCIE GÉRARD ◽  
GILLES HENRI ◽  
SANTIAGO PITA ◽  
MICHAEL PUNCH

In the framework of Active Galactic Nuclei (AGN) unification, BL Lacs and their parent population would share the same intrinsic characteristics, the observational differences being due to the orientation of the relativistic jet compared to the line of sight. BL Lacs would be the objects whose jet is oriented towards us, their emission being amplified by the relativistic Doppler boosting. Constraints arising from fast variability and/or large optical depth to pair production commonly imply large Lorentz factors. The growing number of BL Lacs detected at HE (> 100 MeV) and VHE (> 100 GeV) is a challenge for this unification scheme. Indeed, the high values of Doppler factor needed in the simplest radiative model to explain the emission of these sources imply a large density for the parent population. A possible solution to this Doppler factor crisis lies in considering different geometries for the jet. In this study, we use the BL Lacs detected at HE and VHE to investigate the intrinsic properties of the associated parent population. Using the results presented in Fermi's second AGN catalog and performing MC simulations of the parent population, we constrain the jet parameters: its intrinsic luminosity, Lorentz factor and geometric opening angle. The simulated density of parent population and Doppler factors of the objects detectable at HE within this population are presented according to the jet parameters.


2010 ◽  
Vol 6 (S275) ◽  
pp. 164-167
Author(s):  
J. H. Fan ◽  
W. Xu ◽  
J. Pan ◽  
Y. H. Yuan

AbstractIn this work, we present the analysis results using UMRAO preliminary data base. We used the light curves 1) to get the shortest timescales and then to get the brightness temperature so that we can estimate the Doppler factors; 2) to investigate the periodicity and discuss the variability index. We also used the data base to discuss the polarization properties of blazars. We found that the periodicity distribution in BL Lacs and that in the flat spectrum radio quasars should be from the same distribution. The Doppler factor in FSRQs is higher than that in BL. The polarization in BLs are higher than that in the flat spectrum radio quasars


1976 ◽  
Vol 75 (1) ◽  
pp. 17-28 ◽  
Author(s):  
M. E. Goldstein

A previous analysis of the acoustic radiation from multipole sources is extended to include additional components of the dipole and quadrupole sources. It is found that, unlike the components of the sources considered in the previous paper, the exponent of the Doppler factor now depends on the location of the sources within the jet.


Sign in / Sign up

Export Citation Format

Share Document