scholarly journals Model of a Precessing Jet in 3C 279

1998 ◽  
Vol 164 ◽  
pp. 47-48 ◽  
Author(s):  
Z. Abraham ◽  
E.A. Carrara ◽  
J.A. Zensus

AbstractThe parsec scale radio jet of 3C 279 presents a number of superluminal features that move along straight trajectories with constant velocities. The position angles P.A. of these trajectories, projected in the plane of the sky, and the velocities βobs of the individual components are different. We interpret the differences in the these velocities as differences in the angle between the jet and the line of sight and apply the model of a precessing beam to the data. All the geometrical parameters of the precessing jet and the Lorentz factor γ of the relativistic particles are determined. The model predicts the behavior of the Doppler factor δ as a function of time and we verify that its maximum value occurred at the epochs in which strong optical and X-ray flares were observed.

2010 ◽  
Vol 19 (06) ◽  
pp. 879-885 ◽  
Author(s):  
D. A. SCHWARTZ ◽  
F. MASSARO ◽  
A. SIEMIGINOWSKA ◽  
D. M. WORRALL ◽  
M. BIRKINSHAW ◽  
...  

We summarize a study of PKS 0920-397 using our 42 ks Chandra observation in conjunction with our ATCA 20GHz image, and HST/ACS F814W and F475W images. We investigate the hypothesis that the jet X–ray emission is due to inverse-Compton (IC) scattering on the cosmic microwave background (CMB) from the same population of relativistic electrons that give rise to the radio emission. To calculate parameters intrinsic to the source, one must finesse the fact that we do not know the true angle of the jet to our line of sight. Typical assumptions are that the Doppler factor equals the bulk Lorentz factor, or that the Lorentz factor takes some fixed numerical value. While giving useful estimates, neither assumption can be exact in general. We try different constraints to determine the jet quantities. It is plausible that the kinetic flux is constant along the jet, prior to a terminal hotspot or lobe, and with minimal bending of the jet. Alternatively, because PKS 0920-397 appears straight in projection on the sky, we might assume the jet maintains a constant angle to our line of sight. Either approach gives bulk Lorentz factors of 6 to 8, with kinetic energy flux of order 1046 erg s-1, and with the jet at an angle 2° to 4° from our line of sight.


1997 ◽  
Vol 163 ◽  
pp. 695-696 ◽  
Author(s):  
Erick. J. Guerra ◽  
Ruth A. Daly

AbstractRelativistic outflows from AGN can be parameterized by θ, the angle subtended by the direction of the outflow and the line of sight to the observer, and γ, the bulk Lorentz factor of the outflow. The Doppler factor, δ, and the apparent speed in the plane of the sky, βapp, are combinations of θ and γ. The Doppler factor can be estimated using either the equipartition Doppler factor, δeq (Readhead 1994), or the inverse Compton Doppler factor, δIC. These Doppler factor estimates are combined with observed βapp to solve for θ and γ for different categories of AGN.Ghisellini et al. (1993) compute δIC for 105 compact radio sources, and Güijosa & Daly (1996) compute δeq for the same sample. Daly, Guerra, & Güijosa (1996) estimate θ and γ for the 43 sources that have βapp listed by Vermeulen & Cohen (1994) and δeq computed by Güijosa & Daly (1996).Solutions and errors for θ and γ are presented in Figures 1 and 2 using δeq and δIC respectively. Guerra & Daly (1996) discuss these estimates and errors in greater detail. These AGN fall into the following categories: BL Lacertae objects (BL Lacs), core-dominated high-polarization quasars (CDHPQ), core-dominated low-polarization quasars (CDLPQ), core-dominated quasars with no polarization information (CDQ(NPI)), lobe-dominated quasars (LDQ), and radio galaxies (RG).


Author(s):  
JIN ZHANG ◽  
SHUANG-NAN ZHANG ◽  
EN-WEI LIANG

We compile from literature the broadband SEDs of twelve TeV blazars observed simultaneously or quasi-simultaneously with Fermi/LAT and other instruments. Two SEDs are available for each of the objects and the state is identified as a low or high state according to its flux density at GeV/TeV band. The observed SEDs of BL Lac objects (BL Lacs) are fitted well with the synchrotron + synchrotron-self-Compton (syn+SSC) model, whereas the SEDs of the two flat spectrum radio quasars (FSRQs) need to include the contributions of external Compton scattering. In this scenario, it is found that the Doppler factor δ of FSRQs is smaller than that of BL Lacs, but the magnetic field strength B of FSRQs is larger than that of BL Lacs. The increase of the peak frequency of the SEDs is accompanied with the increase of the flux for the individual sources, which seems opposite to the observational phenomena of the blazar sequence. We refer this phenomenonto blazar anti-sequence of spectral variability for individual TeV blazars. However, both the blazar sequence from FSRQs to BL Lacs and blazar anti-sequence of the spectral variability from low state to high state are accompanied by an increase of the break Lorentz factor of the electron's spectrum γ b and a decrease of B. We propose a model in which the mass accretion rate Ṁ is the driving force behind both the blazar sequence for ensembles of blazars and the blazar anti-sequence for individual blazars. Specifically we suggest that the differences in 〈Ṁ〉 of different blazars produce the observed blazar sequence, but ΔṀ in each blazar results in the observed blazar anti-sequence.


1983 ◽  
Vol 6 ◽  
pp. 531-533
Author(s):  
Geoffrey Burbidge

More than 20 years ago V. A. Ambartsumian proposed that much of the activity in galaxies was dominated and even generated by their nuclei. Subsequent observational work in radio, optical and x-ray frequencies has borne out his prophecy, and major interest has centered about the nature of the machine in the galactic nucleus. The major characteristic of this machine is that it releases energy rapidly and often spasmodically by processes which are not thermonuclear in origin.The original studies which led to the conclusion that nuclei were all important were observations of the powerful radio sources and Seyfert galaxies, and evidence for the ejection of gas from galaxies of many types. The realization that the synchrotron mechanism was the dominant radiation mechanism and the later studies of Compton radiation were fundamental in leading to the conclusion that large fluxes of relativistic particles must be generated in galactic nuclei.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter provides an overview of the structural and synthetic chemistry, and the industrial applications, of dioxazine pigments, a small group of high performance organic pigments. The color violet (or purple) has frequently assumed a prominent position in history, on account of its rarity and cost. The natural colorant Tyrian purple and the first synthetic textile dye, Mauveine, are prime examples of this unique historical feature. CI Pigment Violet 23, also referred to as Dioxazine Violet or Carbazole Violet, is one of the most universally used organic pigments, by far the most important industrial pigment in the violet shade area. Dioxazine Violet is also unique as the dominant industrial violet pigment providing a brilliant, intense violet color and an excellent all-round set of fastness properties. The pigment has a polycyclic molecular structure, originally described wrongly as a linear arrangement, and later shown to adopt an S-shaped arrangement on the basis of X-ray structural analysis. Two other dioxazine pigments are of rather lesser importance. The synthesis and manufacturing route to CI Pigment Violet 23 is described in the review. Finally, a survey of the principal current applications of the individual dioxazine pigments is presented.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Hiroyuki Yamane ◽  
Masaki Oura ◽  
Osamu Takahashi ◽  
Tomoko Ishihara ◽  
Noriko Yamazaki ◽  
...  

AbstractAdhesion is an interfacial phenomenon that is critical for assembling carbon structural composites for next-generation aircraft and automobiles. However, there is limited understanding of adhesion on the molecular level because of the difficulty in revealing the individual bonding factors. Here, using soft X-ray spectromicroscopy we show the physical and chemical states of an adhesive interface composed of a thermosetting polymer of 4,4’-diaminodiphenylsulfone-cured bisphenol A diglycidyl ether adhered to a thermoplastic polymer of plasma-treated polyetheretherketone. We observe multiscale phenomena in the adhesion mechanisms, including sub-mm complex interface structure, sub-μm distribution of the functional groups, and molecular-level covalent-bond formation. These results provide a benchmark for further research to examine how physical and chemical states correlate with adhesion, and demonstrate that soft X-ray imaging is a promising approach for visualizing the physical and chemical states at adhesive interfaces from the sub-mm level to the molecular level.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1986
Author(s):  
Andreas Koenig ◽  
Julius Schmidtke ◽  
Leonie Schmohl ◽  
Sibylle Schneider-Feyrer ◽  
Martin Rosentritt ◽  
...  

The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.


2011 ◽  
Vol 121-126 ◽  
pp. 1526-1529
Author(s):  
Ke Gao Liu ◽  
Jing Li

Bulk Fe4Sb12 and Fe3CoSb12 were prepared by sintering at 600 °C. The phases of samples were analyzed by X-ray diffraction and their thermoelectric properties were tested by electric constant instrument and laser thermal constant instrument. Experimental results show that, the major phases of bulk samples are skutterudite with impurity phase FeSb2. The electric resistivities of the samples increase with temperature rising at 100~500 °C. The bulk samples are P-type semiconductor materials. The Seebeck coefficients of the bulk Fe4Sb12 are higher than those of bulk Fe3CoSb12 samples at 100~200 °C but lower at 300~500 °C. The power factor of the bulk Fe4Sb12 samples decreases with temperature rising while that of bulk Fe3CoSb12 samples increases with temperature rising at 100~500 °C. The thermal conductivities of the bulk Fe4Sb12 samples are relatively higher than those of and Fe3CoSb12, which maximum value is up to 0.0974 Wm-1K-1. The ZT value of bulk Fe3CoSb12 increases with temperature rising at 100~500 °C, the maximum value is up to 0.031.The ZT values of the bulk Fe4Sb12 samples are higher than those of bulk Fe3CoSb12 at 100~300 °C while lower at 400~500 °C.


During the latter part of 1902 and the early months of 1903 I resolved to take as many observations of the rates of dissipation of positive and negative electric charges as possible, and to continue them over the whole 24 hours of the day, and, when opportunity offered, over longer periods. There appeared to be little information regarding the rate of dispersion during the night hours. At about the same time that these observations were being made, Nilsson was doing similar work at Upsala, and found a noticeable maximum value for atmospheric conductivity at about midnight. The observations were made on the Canterbury Plains of New Zealand, at a station about 20 feet above sea-level and about five miles due west from the sea coast. The apparatus used was Elster and Geitel’s Zerstreuungs- apparat , and the formula of reduction used was that given by them, viz:- E = 1/ t log V 0 /V- n / t ' log V' 0 /V' . In this formula E is proportional to the conductivity of the gas surrounding the instrument—for positive or negative charges, as the case may be. The constant “ n ” = ratio of capacity without cylinder ____________________________________ capacity with cylinder was determined by me to be 0·47, as the instrument was always used, with the protecting cover. The cover was always at one height above the base of the instrument, and was set so as to be as nearly co-axial with the discharging cylinder as could be judged by eye. No attempt was made to determine the actual capacity of the condenser cylinder and protecting cover, which would be a somewhat variable quantity owing- (1) to the differences on different days in attempting to cause the two to be co-axial; (2) to a certain amount of looseness in the fit of the shank of the cylinder on to its hole. The value above given for “ n "is the mean of several deter­minations made with different settings of the cover and cylinder. The individual values of “ n ” varied over about 0.03.


Sign in / Sign up

Export Citation Format

Share Document