Anomalous dependence of ionization probability and electron angular distributions on orientation of molecular axis in photoionization of H+ 2: effect of two-center interference

Author(s):  
Dmitry Krapivin ◽  
Dmitry A. Telnov

Abstract A theoretical and computational study of photoionization of the one-electron molecular ion H+ 2 initially in the 1σu state is performed. The laser pulse is linearly polarized with the carrier wavelength in the extreme ultraviolet region. The electron wave function is obtained by solving the time-dependent Schrödinger equation with the help of the generalized pseudospectral method. The dependence of the total ionization probability and photoelectron spectra on the orientation of the molecular axis is analyzed. At the wavelength of 12.5 nm, anomalous behavior of the ionization probability is found, where the ionization probability increases with an increase of the angle between the polarization vector of the external field and the molecular axis and reaches a maximum at the perpendicular orientation of the molecule. The phenomenon is explained as resulting from the two-center interference in the wave function of the emitted electron. When the wavelength or internuclear distance change, the effect disappears, and the ionization probability exhibits its usual behavior with the maximum at the parallel orientation of the molecular axis.

1994 ◽  
Vol 33 (25) ◽  
pp. 5902 ◽  
Author(s):  
G. E. Holland ◽  
J. F. Seely ◽  
R. P. McCoy ◽  
K. F. Dymond ◽  
C. Rollins ◽  
...  

2018 ◽  
Vol 124 (1) ◽  
pp. 015901 ◽  
Author(s):  
Khoa Anh Tran ◽  
Khuong Ba Dinh ◽  
Peter Hannaford ◽  
Lap Van Dao

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1493
Author(s):  
Sang-Kon Kim

Although extreme ultraviolet lithography (EUVL) has potential to enable 5-nm half-pitch resolution in semiconductor manufacturing, it faces a number of persistent challenges. Line-edge roughness (LER) is one of critical issues that significantly affect critical dimension (CD) and device performance because LER does not scale along with feature size. For LER creation and impacts, better understanding of EUVL process mechanism and LER impacts on fin-field-effect-transistors (FinFETs) performance is important for the development of new resist materials and transistor structure. In this paper, for causes of LER, a modeling of EUVL processes with 5-nm pattern performance was introduced using Monte Carlo method by describing the stochastic fluctuation of exposure due to photon-shot noise and resist blur. LER impacts on FinFET performance were investigated using a compact device method. Electric potential and drain current with fin-width roughness (FWR) based on LER and line-width roughness (LWR) were fluctuated regularly and quantized as performance degradation of FinFETs.


1997 ◽  
Vol 75 (12) ◽  
pp. 1851-1861 ◽  
Author(s):  
Heidi M. Muchall ◽  
Nick H. Werstiuk ◽  
Jiangong Ma ◽  
Thomas T. Tidwell ◽  
Kuangsen Sung

The He(I) photoelectron spectra of silylketenes (Me3Si)2C=C=O (1), Me5Si2CH=C=O (2), Me2Si(CH=C=O)2 (3), MeSi(CH=C=O)3 (4), (SiMe2CH=C=O)2 (5), and (CH2SiMe2CH=C=O)2 (6) have been recorded and their structures and orbital energies have been calculated by ab initio methods. Orbital energies for disilanes 2 and 5 are strongly dependent on a Si-Si-C-C torsional angle due to σ–π orbital interaction. Comparisons between experimental and simulated spectra show that 2 and 5 prefer conformations in which the Si—Si bond and ketene group(s) are approximately orthogonal (113° and 111°, respectively). Silylalkenes Me5Si2CH=CH2 (7) and (SiMe2CH=CH2)2 (8), which have been included in the computational study, show the same behavior as their corresponding silylketenes. Silylbis- and trisketenes 3–6 do not exhibit π–π interaction of any significance. For Si—Si containing compounds, the best agreement between experimental and computed data was obtained when Becke3LYP/6-31G*//HF/3-21G* was employed. Keywords: conformational behavior, electronic structure, photoelectron spectroscopy, quantum chemical calculations, silylketenes.


2010 ◽  
Vol 30 (10) ◽  
pp. 2849-2854 ◽  
Author(s):  
卢增雄 Lu Zengxiong ◽  
金春水 Jin Chunshui ◽  
张立超 Zhang Lichao ◽  
王丽萍 Wang Liping

2015 ◽  
Vol 22 (5) ◽  
pp. 1312-1318 ◽  
Author(s):  
Jih-Young Yuh ◽  
Shan-Wei Lin ◽  
Liang-Jen Huang ◽  
Hok-Sum Fung ◽  
Long-Life Lee ◽  
...  

During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam-position monitor (BPM) to a testing beamline and a single-grating beamline that enables experiments to record X-ray photo-emission spectra (XPS) and X-ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X-ray photon energies in the range 300–1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano-fabrication and topological thin films are increasing. The basic spherical-grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end-stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme-ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in theL-edge adsorption spectrum.


Author(s):  
Kento Toume ◽  
Katsuya Oguri ◽  
Hiroki Mashiko ◽  
Keiko Kato ◽  
Yoshiaki Sekine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document