Effects of interfacial Dzyaloshinskii–Moriya interaction on magnetic dynamics

Author(s):  
Maokang Shen ◽  
Xiangyu Li ◽  
Yue Zhang ◽  
Xiaofei Yang ◽  
Shi Chen

Abstract In the “Beyond Moore” era, the information device is expected to exhibit advantages including small sizes, high processing speed, and low power and dissipation. The novel magnetic information device with these advantages is made of heavy metal(HM)/ferromagnet (FM) composite. Owing to the asymmetric structure, the anisotropic exchange coupling named the interfacial Dzyaloshinskii–Moriya interaction (iDMI) is generated at the HM/FM interface. This iDMI influences the magnetic dynamics including ferromagnetic resonance (FMR), spin wave, and the motion of chiral DWs. These magnetic dynamic behaviors are the bases of the functions of novel magnetic information devices. Therefore, the influence of iDMI on the magnetic dynamics has attracted wide attention in recent years. In this topical review, we give a detailed introduction and discussion about recent investigation on the iDMI-relevant magnetic dynamics of the HM/FM bilayer system. This review consists of five sections: (1). the introduction about the background, the basic theory of magnetic dynamics and DMI; (2). the review about the effect of iDMI on the propagation of spin wave. Owing to the iDMI, the dispersion relationship of spin wave is asymmetric. This not only offers a precise method for measuring the iDMI constant, but also gives rise to potential application for novel magnonic devices. (3). the review about the effect of iDMI on the FMR. Unique iDMI-relevant mode was observed in the FMR spectra owing to the nonparallel alignment of magnetic moments. (4). the review about the motion of DWs with chiral structure due to iDMI. The iDMI plays a fundamental role in the high velocity of the chiral DWs. Meanwhile, the iDMI results in the tilting of DW plane, and the mechanism has been widely investigated. The tilting of the DW plane may be depressed by the interlayer exchange coupling. (5). finally, we summarize the review and give an outlook.

2020 ◽  
Vol 6 (48) ◽  
pp. eabd8861
Author(s):  
Zachary R. Nunn ◽  
Claas Abert ◽  
Dieter Suess ◽  
Erol Girt

Interlayer exchange coupling in transition metal multilayers has been intensively studied for more than three decades and is incorporated into almost all spintronic devices. With the current spacer layers, only collinear magnetic alignment can be reliably achieved; however, controlling the coupling angle has the potential to markedly expand the use of interlayer exchange coupling. Here, we show that the coupling angle between the magnetic moments of two ferromagnetic layers can be precisely controlled by inserting a specially designed magnetic metallic spacer layer between them. The coupling angle is controlled solely by the composition of the spacer layer. Moreover, the biquadratic coupling strength, responsible for noncollinear alignment, is larger than that of current materials. These properties allow for the fabrication and study of not yet realized magnetic structures that have the potential to improve existing spintronic devices.


Author(s):  
Oksana Koplak ◽  
Alexander Bezverkhnii ◽  
Alexandr Sadovnikov ◽  
Roman Morgunov ◽  
Michel Hehn ◽  
...  

Abstract We present analysis of the effect of Dzyaloshinskii–Moriya interaction (DMI) on spin wave nonreciprocity and bubble expansion asymmetry in Pt/Co/Ir/Co/Pt synthetic ferrimagnets with perpendicular magnetic anisotropy. We propose analysis of the DMI by Brillouin Light Scattering technique (BLS) and Kerr microscopy (MOKE) in the presence of interlayer exchange coupling strongly changing spin wave dispersion law and field dependences of domain wall velocity in comparison with those observed earlier in Ir/Co/Pt structures with a single Co layer. We have determined DMI values of each Co layer from unusually inverted dependence of velocity of the domain wall on in-plane magnetic field. Opposite signs of effective fields and DMI fields in the two Co layers invert field dependence of the domain wall velocity. DMI energy determined from BLS is higher than values, determined by bubble expansion.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1538 ◽  
Author(s):  
Ziyang Yu ◽  
Chenhuinan Wei ◽  
Fan Yi ◽  
Rui Xiong

The current-induced domain wall (DW) motion in a racetrack memory with a synthetic antiferromagnets (SAFs) structure has attracted attention because of the ultrahigh velocity of the DW. However, since there is little stray field due to the zero net magnetization in a pair of antiferromagnetically (AFM) coupled domains, how to read the information stored in the pair of domains is still challenging. In the present work, we propose a readable SAF racetrack memory composed of two ferromagnetic (FM) layers with distinct uniaxial-anisotropy constants. As a result, a region of staggered domains formed between two neighboring DWs in the two layers. In this region, there is a parallel alignment of the moments in the two FM layers. This parallel magnetization is readable and can be exploited to label the structure of the nearby AFM-coupled domains for the racetrack with DWs moving in a fixed direction. This function can be realized by connecting a Schmitt Trigger to a sensor for reading. The stability and the length of the staggered region can be well-tuned by changing the magnetic parameters, such as the interlayer exchange coupling constants, the Dzyaloshinskii–Moriya interaction (DMI) constants, and the uniaxial-anisotropy constants of the two FM layers, in a range that is experimentally achievable.


2009 ◽  
Vol 321 (9) ◽  
pp. 1214-1220 ◽  
Author(s):  
M. Marcellini ◽  
M. Pärnaste ◽  
B. Hjörvarsson ◽  
G. Nowak ◽  
H. Zabel

Sign in / Sign up

Export Citation Format

Share Document