Termination-dependent electronic structure and atomic-scale screening behavior of the Cu2O(111) Surface

Author(s):  
Alexander Gloystein ◽  
Niklas Nilius ◽  
Claudine Noguera ◽  
Jacek Goniakowski
1999 ◽  
Vol 5 (S2) ◽  
pp. 120-121
Author(s):  
D. A. Muller ◽  
T. Sorsch ◽  
S. Moccio ◽  
F. H. Baumann ◽  
K. Evans-Lutterodt ◽  
...  

The transistors planned for commercial use ten years from now in many electronic devices will have gate lengths shorter than 130 atoms, gate oxides thinner than 1.2 nm of SiO2 and clock speeds in excess of 10 GHz. It is now technologically possible to produce such transistors with gate oxides only 5 silicon atoms thick[l]. Since at least two of those 5 atoms are not in a local environment similar to either bulk Si or bulk SiO2, the properties of the interface are responsible for a significant fraction of the “bulk” properties of the gate oxide. However the physical (and especially their electrical) properties of the interfacial atoms are very different from .bulk Si or bulk SiO2. Further, roughness on an atomic scale can alter the leakage current by orders of magnitude.In our studies of such devices, we found that thermal oxidation tends to produce Si/SiO2 interfaces with 0.1-0.2 nm rms roughness.


2020 ◽  
Vol 12 (40) ◽  
pp. 44648-44657 ◽  
Author(s):  
Jesús E. Castellanos-Águila ◽  
Lucas Lodeiro ◽  
Eduardo Menéndez-Proupin ◽  
Ana L. Montero-Alejo ◽  
Pablo Palacios ◽  
...  

2019 ◽  
Vol 205 ◽  
pp. 02016
Author(s):  
Sergej Neb ◽  
Christian Oberer ◽  
Walter Enns ◽  
Andreas Gebauer ◽  
Norbert Müller ◽  
...  

Attosecond time-resolved photoemission from the differently terminated BiTeCl surfaces yield a photoelectron streaking that cannot be explained by bulk propagation effects alone. Instead, the atomic scale electronic structure and dynamical screening for both surface terminations have to be taken into account.


2020 ◽  
Vol 20 (3) ◽  
pp. 1651-1659 ◽  
Author(s):  
Hongmei Zhu ◽  
Zhengjie Zhang ◽  
Xuchuan Jiang

Density function theory (DFT) method was developed and applied for fundamentally understanding the doping effect of various metals (Al, Ti and Cr) on vanadium dioxide (VO2). The substitution doping of Al, Ti and Cr in VO2 could lead to significant changes in electronic structure, band gap and optical property. Different from physical experiments, the DFT method could be utilized for fundamental understandings at an atomic scale. It was found via DFT calculations that: (i) Al doping caused a slightly distorted octahedron in monoclinic VO2(M), and narrowed the band gap of VO2(M) due to the upward shift of the valence band (VB), while Cr doping narrowed the band gap because of the downward shift of the conduction band (CB); (ii) Ti doping slightly widened the band gap of VO2(M); and (iii) the optical reflectivity of VO2(M) decreased after substitution doping low-valent metals (e.g., Al). This study will be beneficial for designing and controlling elemental doping to obtain metal oxide nanocomposites with unique band gap and electronic structure for thermochromic energy saving applications.


2003 ◽  
Vol 779 ◽  
Author(s):  
S. P. Beckman ◽  
D. C. Chrzan

AbstractThe atomic scale structures of the partial dislocation cores in GaAs are explored using ab initio electronic structure total energy techniques. The structure of the 30° partial dislocations are expected to be period doubled along the core. The structure of the 90° partial dislocations remains more uncertain, and here, an effort is made to predict which of two proposed reconstruction, double period or single period, is more stable. The relative energies of the two core structures are found to be equal, within the accuracy of the present calculations. It is suggested that at temperature, both core reconstructions will be present.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (12) ◽  
pp. 986-990 ◽  
Author(s):  
Thomas Bligaard ◽  
Martin P. Andersson ◽  
Karsten W. Jacobsen ◽  
Hans L. Skriver ◽  
Claus H. Christensen ◽  
...  

AbstractWe describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computational design of other materials as well. A central problem is how to treat the huge number of compounds that can be envisioned by varying the concentrations and the number of the elements involved. We discuss various strategies for approaching this problem and show how one strategy has led to the computational discovery of a promising catalytic metal alloy surface with high reactivity and low cost.


Nature ◽  
10.1038/21602 ◽  
1999 ◽  
Vol 399 (6738) ◽  
pp. 758-761 ◽  
Author(s):  
D. A. Muller ◽  
T. Sorsch ◽  
S. Moccio ◽  
F. H. Baumann ◽  
K. Evans-Lutterodt ◽  
...  

MRS Bulletin ◽  
2006 ◽  
Vol 31 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Harold Y. Hwang

AbstractThe following article is based on the Outstanding Young Investigator Award presentation given by Harold Y. Hwang of the University of Tokyo on March 29, 2005, at the Materials Research Society Spring Meeting in San Francisco. Hwang was cited for “innovative work on the physics of transition-metal oxides and the atomic-scale synthesis of complex oxide heterostructures.” Perovskite oxides range from insulators to superconductors and can incorporate magnetism as well as couple to phonon instabilities. The close lattice match between many perovskites raises the possibility of growing epitaxial thin-film heterostructures with different ground states that may compete or interact. The recent development of superconducting Josephson junctions, magnetic tunnel junctions, ferroelectric memory cells, and resistive switching can be considered examples within this new heteroepitaxial family. In this context, Hwang presents his studies of electronic structure at atomically abrupt interfaces grown by pulsed laser deposition. Some issues are generic to all heterointerfaces, such as the stability of dopant profiles and diffusion, interface states and depletion, and interface charge arising from polarity discontinuities. A more unusual issue is the charge structure associated with Mott insulator/band insulator interfaces. The question is, how should one consider the correlated equivalent of band bending? This semiconductor concept is based on the validity of rigid single-particle band diagrams, which are known to be an inadequate description for strongly correlated electrons. In addition to presenting an interesting scientific challenge, this question underlies the attempts to develop new applications of doped Mott insulators in device geometries.


Sign in / Sign up

Export Citation Format

Share Document