A novel calibration method for ball joint position in a posture adjustment system

2020 ◽  
Vol 31 (12) ◽  
pp. 125013
Author(s):  
Wenmin Chu ◽  
Xiang Huang ◽  
Shuanggao Li
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wenmin Chu ◽  
Xiang Huang ◽  
Shuanggao Li

Purpose With the improvement of modern aircraft requirements for safety, long life and economy, higher quality aircraft assembly is needed. However, due to the manufacturing and assembly errors of the posture adjustment mechanism (PAM) used in the digital assembly of aircraft large component (ALC), the posture alignment accuracy of ALC is difficult to be guaranteed, and the posture adjustment stress is easy to be generated. Aiming at these problems, this paper aims to propose a calibration method of redundant actuated parallel mechanism (RAPM) for posture adjustment. Design/methodology/approach First, the kinematics model of the PAM is established, and the influence of the coupling relationship between the axes of the numerical control locators (NCL) is analyzed. Second, the calibration method based on force closed-loop feedback is used to calibrate each branch chain (BC) of the PAM, and the solution of kinematic parameters is optimized by Random Sample Consensus (RANSAC). Third, the uncertainty of kinematic calibration is analyzed by Monte Carlo method. Finally, a simulated posture adjustment system was built to calibrate the kinematics parameters of PAM, and the posture adjustment experiment was carried out according to the calibration results. Findings The experiment results show that the proposed calibration method can significantly improve the posture adjustment accuracy and greatly reduce the posture adjustment stress. Originality/value In this paper, a calibration method based on force feedback is proposed to avoid the deformation of NCL and bracket caused by redundant driving during the calibration process, and RANSAC method is used to reduce the influence of large random error on the calibration accuracy.


2020 ◽  
Vol 40 (3) ◽  
pp. 377-386 ◽  
Author(s):  
Wenmin Chu ◽  
Xiang Huang ◽  
Shuanggao Li

Purpose Posture adjustment plays an important role in spacecraft manufacturing. The traditional posture adjustment method, which has a large workload and is difficult to guarantee the quality of posture adjustment, cannot meet the requirements of modern spacecraft manufacturing. This paper aims to optimize the trajectory of posture adjustment, reduce the internal force of the posture adjustment mechanism and improve the accuracy of the system. Design/methodology/approach First, the measuring point is measured by a laser tracker and the position and posture of the cabin is solved. Then, Newton–Euler method is used to construct the dynamic model of the posture adjustment system (PAS) without internal force. Finally, the adjustment time is optimized based on Fibonacci search method and the trajectory of the cabin is fitted by the fifth order polynomial. Findings The simulation results show that, compared with the other trajectory planning methods, this method can effectively avoid the internal force of posture adjustment caused by redundant driving, and the trajectory of velocity and acceleration obtained are continuous, meeting the engineering constraints. Originality/value In this paper, a dynamic model of PAS without internal force is constructed. The trajectory planning of posture adjustment based on this model can improve the quality of cabin assembly.


Author(s):  
Hidehiko Shishido ◽  
Itaru Kitahara

In sports science research, there are many topics that utilize the body motion of athletes extracted by motion capture system, since motion information is valuable data for improving an athlete’s skills. However, one of the unsolved challenges in motion capture is extraction of athletes’ motion information during the actual game or match, as placing markers on athletes is a challenge during game play. In this research, the authors propose a method for acquisition of motion information without attaching a marker, utilizing computer vision technology. In the proposed method, the three-dimensional world joint position of the athlete’s body can be acquired using just two cameras without any visual markers. Furthermore, the athlete’s three-dimensional joint position during game play can also be obtained without complicated preparations. Camera calibration that estimates the projective relationship between three-dimensional world and two-dimensional image spaces is one of the principal processes for the respective three-dimensional image processing, such as three-dimensional reconstruction and three-dimensional tracking. A strong-calibration method, which needs to set up landmarks with known three-dimensional positions, is a common technique. However, as the target space expands, landmark placement becomes increasingly complicated. Although a weak-calibration method does not need known landmarks, the estimation precision depends on the accuracy of the correspondence between image captures. When multiple cameras are arranged sparsely, sufficient detection of corresponding points is difficult. In this research, the authors propose a calibration method that bridges multiple sparsely distributed cameras using mobile camera images. Appropriate spacing was confirmed between the images through comparative experiments evaluating camera calibration accuracy by changing the number of bridging images. Furthermore, the proposed method was applied to multiple capturing experiments in a large-scale space to verify its robustness. As a relevant example, the proposed method was applied to the three-dimensional skeleton estimation of badminton players. Subsequently, a quantitative evaluation was conducted on camera calibration for the three-dimensional skeleton. The reprojection error of each part of the skeletons and standard deviations were approximately 2.72 and 0.81 mm, respectively, confirming that the proposed method was highly accurate when applied to camera calibration. Consequently, a quantitative evaluation was conducted on the proposed calibration method and a calibration method using the coordinates of eight manual points. In conclusion, the proposed method stabilizes calibration accuracy in the vertical direction of the world coordinate system.


Author(s):  
Wenmin Chu ◽  
Xiang Huang ◽  
Shuanggao Li ◽  
Peihuang Lou

In the digital aircraft assembly system, the large component of aircraft is connected with the numerical control locator through a ball joint composed of a ball head and a ball socket. To ensure the posture adjustment accuracy of large component of aircraft, the clearance between the ball head and the ball socket is very small. Therefore, it is very difficult to accurately guide the ball head of large component of aircraft into the ball socket of the numerical control locator. Aiming at this problem, this article proposes a ball head positioning method based on hybrid force-position control, so that the ball socket can approach the ball head adaptively. First, according to the technical characteristics of the ball head positioning, the axes of the numerical control locator are divided into position control axis and force control axis, and the conditions to ensure the safety of ball head positioning are analyzed. Then the control model of ball head positioning based on hybrid force-position control is established and simulated by Simulink. Finally, a simulated posture adjustment system is built in the laboratory, and a series of ball head positioning experiments based on hybrid force-position control are carried out. The experimental results show that, compared with the traditional ball head positioning method, the ball head positioning process based on hybrid force-position control is more stable and faster, and the method can significantly reduce the lateral force. Moreover, the proposed method can be easily integrated into the existing posture adjustment system without additional hardware cost.


Author(s):  
Wenmin Chu ◽  
Xiang Huang

Purpose Flexible tooling for adjusting the posture of large components of aircraft (LCA) is composed of several numerical control locators (NCLs). Because of the manufacture and installation errors of NCL, the traditional control method of NCL may cause great interaction force between NCLs and form the internal force of LCA during the process of posture adjustment. Aiming at this problem, the purpose of this paper is to propose a control method for posture adjustment system based on hybrid force-position control (HFPC) to reduce the internal force of posture adjustment. Design/methodology/approach First of all, the causes of internal force of posture adjustment were analyzed by using homogeneous transformation matrix and inverse kinematics. Then, axles of NCLs were divided into position control axle and force control axle based on the screw theory, and the dynamic characteristics of each axle were simulated by MATLAB. Finally, a simulated posture adjustment system was built in the laboratory to carry out HFPC experiment and was compared with the other two traditional control methods for posture adjustment. Findings The experiment results show that HFPC method for redundant actuated parallel mechanism (RAPM) can significantly reduce the interaction force between NCLs. Originality/value In this paper, HFPC is applied to the control of the posture adjustment system, which reduces the internal force of LCA and improves the assembly quality of aircraft parts.


2018 ◽  
Vol 1 (84) ◽  
Author(s):  
Vilma Jurevičienė ◽  
Albertas Skurvydas ◽  
Juozas Belickas ◽  
Giedra Bušmanienė ◽  
Dovilė Kielė ◽  
...  

Research  background  and  hypothesis.  Proprioception  is  important  in  the  prevention  of  injuries  as  reduced proprioception  is  one  of  the  factors  contributing  to  injury  in  the  knee  joint,  particularly  the  ACL.  Therefore, proprioception appears not only important for the prevention of ACL injuries, but also for regaining full function after ACL reconstruction.Research aim. The aim of this study was to understand how proprioception is recovered four and five months after anterior cruciate ligament (ACL) reconstruction.Research methods. The study included 15 male subjects (age – 33.7 ± 2.49 years) who had undergone unilateral ACL reconstruction with a semitendinosus/gracilis (STG) graft in Kaunas Clinical Hospital. For proprioceptive assessment, joint position sense (JPS) was measured on both legs using an isokinetic dynamometer (Biodex), at knee flexion of 60° and 70°, and at different knee angular velocities of 2°/s and 10°/s. The patients were assessed preoperatively and after 4 and 5 months, postoperatively.Research results. Our study has shown that the JPS’s (joint position sense) error scores  to a controlled active movement is significantly higher in injured ACL-deficient knee than in the contralateral knee (normal knee) before surgery and after four and five months of rehabilitation.  After 4 and 5 months of rehabilitation we found significantly lower values in injured knees compared to the preoperative data. Our study has shown that in injured knee active angle reproduction errors after 4 and 5 months of rehabilitation were higher compared with the ones of the uninjured knee. Proprioceptive ability on the both legs was  independent of all differences angles for target and starting position for movement. The knee joint position sense on both legs depends upon the rate of two different angular velocities and the mean active angle reproduction errors at the test of angular velocity slow speed was the highest compared with the fast angular velocity. Discussion and conclusions. In conclusion, our study shows that there was improvement in mean JPS 4 and 5 months after ACL reconstruction, but it did not return to normal indices.Keywords: knee joint, joint position sense, angular velocity, starting position for movement.


2020 ◽  
pp. 60-68
Author(s):  
V. A. Pyalchenkov ◽  
D. V. Pyalchenkov

Research has found that the axial load applied to the bit is distributed unevenly along the crowns of the balls. The middle crowns are the busiest. The value of the axial force perceived by a separate ring is associated with the deformation of the details of the ball joint. You can reduce the uneven loading of crowns by shifting them along the ball along the radius of the bit, placing them so that the vertical line passing through the center of the lower ball of the lock bearing passes through the middle of the gap between the crowns of neighboring balls. The bits with the new option of placing the teeth on the balls were tested on the stand and in industrial conditions. For the bits of this design, the axial load was distributed more evenly over the crowns, which allowed increasing the efficiency of their work.


Sign in / Sign up

Export Citation Format

Share Document