High enhancement factor of SERS probe based on silver nano-structures deposited on a silica microsphere by laser-assisted photochemical method

2020 ◽  
Vol 32 (2) ◽  
pp. 025109
Author(s):  
Huy Bui ◽  
Thuy Van Nguyen ◽  
Thanh Son Pham ◽  
Van Hoi Pham ◽  
Thanh Binh Pham
2020 ◽  
Vol 12 (4) ◽  
pp. 97
Author(s):  
Thanh Binh Pham ◽  
Thuy Van Nguyen ◽  
Thi Hong Cam Hoang ◽  
Huy Bui ◽  
Thanh Son Pham ◽  
...  

The homogeneous distribution of nano-metallic structures on the surface-enhanced Raman (SERS) substrates plays an important factor for high-sensitive Raman scattering measurement. In this paper, we present a low-cost laser-assisted photochemical method for making a SERS probe based on silver nanostructures, which are one-timely synthesized nano-silver structures, homogeneously deposited on silica microsphere surfaces. Achieved SERS-activity substrates with a homogeneous distribution of Ag-nanostructures are verified by a mapping technique on the surface of Ag-coated microsphere for the detection of low concentration of Rhodamine 6G in aqueous solutions in a range of 10-4-10-9M. The obtained results show that a SERS microsphere probe has a good repetition of SERS-activity in any space of sensing area, and large potential for application in a biochemical sensing technique. Full Text: PDF ReferencesY. Chen et al., "Interfacial reactions in lithium batteries", J. Phys. D: Appl. Phys. 50, 02510 (2017). CrossRef T.B. Pham, H. Bui, H.T. Le, V.H. Pham, "Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water", Sensors 17, 0007 (2017). CrossRef X. Wang, O.S. Wolfbeis, "Fiber-Optic Chemical Sensors and Biosensors (2013–2015)", Anal. Chem. 88, 203 (2016). CrossRef R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J.H. Joen, G. Rhie, J. Choo, "Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips", Sens. Actuators B-Chem. 270, 72 (2018). CrossRef H. Zhang et al., "Determination of Pesticides by Surface-Enhanced Raman Spectroscopy on Gold-Nanoparticle-Modified Polymethacrylate", Anal. Let. 49, 2268 (2016). CrossRef L. Chen, H. Yan, X. Xue, D. Jiang, Y. Cai, D. Liang, Y.M. Jung, X.X. Han, B. Zhao, "Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter", Appl. Spectrosc. 71, 1543 (2017). CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen, "A solution to the fabrication and tarnishing problems of surface-enhanced Raman spectroscopy (SERS) fiber probes", Sci. Rep. 5, 8320 (2015). CrossRef J. Zhang, S. Chen, T. Gong, X. Zhang, Y. Zhu, "Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection", Plasm. 11, 743 (2016). CrossRef W. Xu et al., "A Dual-Butterfly Structure Gyroscope", Sensors 17, 467 (2017). CrossRef K. Setoura, S. Ito, M. Yamada, H. Yamauchi, H. Miyasaka, "Fabrication of silver nanoparticles from silver salt aqueous solution at water-glass interface by visible CW laser irradiation without reducing reagents", J. Photochem. Photobio. A: Chem. 344, 168 (2017). CrossRef K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, "Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis", Nano Lett. 16, 3675 (2016). CrossRef Z. Huang, X. Lei, Y. Liu, Z. Wang, X. Wang, Z. Wang, Q. Mao, G. Meng, "Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application", ACS Appl. Mater. Interfaces 7, 17247 (2015). CrossRef


2020 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Atyaksheva ◽  
Yermek Sarsikeyev ◽  
Anastasia Atyaksheva ◽  
Olga Galtseva ◽  
Alexander Rogachev

Aims:: The main goals of this research are exploration of energy-efficient building materials when replacing natural materials with industrial waste and development of the theory and practice of obtaining light and ultra-light gravel materials based on mineral binders and waste dump ash and slag mixtures of hydraulic removal. Background.: Experimental data on the conditions of formation of gravel materials containing hollow aluminum and silica microsphere with opportunity of receipt of optimum structure and properties depending on humidity with the using of various binders are presented in this article. This article dwells on the scientific study of opportunity physical-mechanical properties of composite materials optimization are considered. Objective.: Composite material contains hollow aluminum and silica microsphere. Method.: The study is based on the application of the method of separation of power and heat engineering functions. The method is based on the use of the factor structure optimality, which takes into account the primary and secondary stress fields of the structural gravel material. This indicates the possibility of obtaining gravel material with the most uniform distribution of nano - and microparticles in the gravel material and the formation of stable matrices with minimization of stress concentrations. Experiments show that the thickness of the cement shell, which performs power functions, is directly related to the size of the raw granules. At the same time, the thickness of the cement crust, regardless of the type of binder, with increasing moisture content has a higher rate of formation for granules of larger diameter. Results.: The conditions for the formation of gravel composite materials containing a hollow aluminosilicate microsphere are studied. The optimal structure and properties of the gravel composite material were obtained. The dependence of the strength function on humidity and the type of binder has been investigated. The optimal size and shape of binary form of gravel material containing a hollow aluminosilicate microsphere with a minimum thickness of a cement shell and a maximum strength function was obtained. Conclusion.: Received structure allows to separate power and heat engineering functions in material and to minimize the content of the excited environment centers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Iryna Zelenina ◽  
Igor Veremchuk ◽  
Yuri Grin ◽  
Paul Simon

Nano-scaled thermoelectric materials attract significant interest due to their improved physical properties as compared to bulk materials. Well-shaped nanoparticles such as nano-bars and nano-cubes were observed in the known thermoelectric material PbTe. Their extended two-dimensional nano-layer arrangements form directly in situ through electron-beam treatment in the transmission electron microscope. The experiments show the atomistic depletion mechanism of the initial crystal and the recrystallization of PbTe nanoparticles out of the microparticles due to the local atomic-scale transport via the gas phase beyond a threshold current density of the beam.


Author(s):  
Debabrata Ghosh Dastidar ◽  
Dipanjan Ghosh ◽  
Gopal Chakrabarti

Author(s):  
Daria Boglaienko ◽  
Odeta Qafoku ◽  
Ravi K. Kukkadapu ◽  
Libor Kovarik ◽  
Yelena P. Katsenovich ◽  
...  

Enhanced TcO4− reduction by metallic Fe0 in the presence of particulate and structural Si. Rhythmical precipitation of dissolved iron leads to formation of layered structures related to geological phenomena such as orbicular rocks and Liesegang rings.


Sign in / Sign up

Export Citation Format

Share Document