BDS-2/BDS-3 combined precise time-frequency transfer with different inter-system bias estimation strategies and different analysis centres products

Author(s):  
Wei Xu ◽  
Chao Yan ◽  
Jian Chen
2021 ◽  
Vol 13 (4) ◽  
pp. 793
Author(s):  
Guoqiang Jiao ◽  
Shuli Song ◽  
Qinming Chen ◽  
Chao Huang ◽  
Ke Su ◽  
...  

BeiDou global navigation satellite system (BDS) began to provide positioning, navigation, and timing (PNT) services to global users officially on 31 July, 2020. BDS constellations consist of regional (BDS-2) and global navigation satellites (BDS-3). Due to the difference of modulations and characteristics for the BDS-2 and BDS-3 default civil service signals (B1I/B3I) and the increase of new signals (B1C/B2a) for BDS-3, a systemically bias exists in the receiver-end when receiving and processing BDS-2 and BDS-3 signals, which leads to the inter-system bias (ISB) between BDS-2 and BDS-3 on the receiver side. To fully utilize BDS, the BDS-2 and BDS-3 combined precise time and frequency transfer are investigated considering the effect of the ISB. Four kinds of ISB stochastic models are presented, which are ignoring ISB (ISBNO), estimating ISB as random constant (ISBCV), random walk process (ISBRW), and white noise process (ISBWN). The results demonstrate that the datum of receiver clock offsets can be unified and the ISB deduced datum confusion can be avoided by estimating the ISB. The ISBCV and ISBRW models are superior to ISBWN. For the BDS-2 and BDS-3 combined precise time and frequency transfer using ISBNO, ISBCV, ISBRW, and ISBWN, the stability of clock differences of old signals can be enhanced by 20.18%, 23.89%, 23.96%, and 11.46% over BDS-2-only, respectively. For new signals, the enhancements are −50.77%, 20.22%, 17.53%, and −3.69%, respectively. Moreover, ISBCV and ISBRW models have the better frequency transfer stability. Consequently, we recommended the optimal ISBCV or suboptimal ISBRW model for BDS-2 and BDS-3 combined precise time and frequency transfer when processing the old as well as the new signals.


2021 ◽  
Vol 13 (15) ◽  
pp. 2972
Author(s):  
Wei Xu ◽  
Wen-Bin Shen ◽  
Cheng-Hui Cai ◽  
Li-Hong Li ◽  
Lei Wang ◽  
...  

The present Global Navigation Satellite System (GNSS) can provide at least double-frequency observations, and especially the Galileo Navigation Satellite System (Galileo) can provide five-frequency observations for all constellation satellites. In this contribution, precision point positioning (PPP) models with Galileo E1, E5a, E5b, E5 and E6 frequency observations are established, including a dual-frequency (DF) ionospheric-free (IF) combination model, triple-frequency (TF) IF combination model, quad-frequency (QF) IF combination model, four five-frequency (FF) IF com-bination models and an FF uncombined (UC) model. The observation data of five stations for seven days are selected from the multi-GNSS experiment (MGEX) network, forming four time-frequency links ranging from 454.6 km to 5991.2 km. The positioning and time-frequency transfer performances of Galileo multi-frequency PPP are compared and evaluated using GBM (which denotes precise satellite orbit and clock bias products provided by Geo Forschung Zentrum (GFZ)), WUM (which denotes precise satellite orbit and clock bias products provided by Wuhan University (WHU)) and GRG (which denotes precise satellite orbit and clock bias products provided by the Centre National d’Etudes Spatiales (CNES)) precise products. The results show that the performances of the DF, TF, QF and FF PPP models are basically the same, the frequency stabilities of most links can reach sub10−16 level at 120,000 s, and the average three-dimensional (3D) root mean square (RMS) of position and average frequency stability (120,000 s) can reach 1.82 cm and 1.18 × 10−15, respectively. The differences of 3D RMS among all models are within 0.17 cm, and the differences in frequency stabilities (in 120,000 s) among all models are within 0.08 × 10−15. Using the GRG precise product, the solution performance is slightly better than that of the GBM or WUM precise product, the average 3D RMS values obtained using the WUM and GRG precise products are 1.85 cm and 1.77 cm, respectively, and the average frequency stabilities at 120,000 s can reach 1.13 × 10−15 and 1.06 × 10−15, respectively.


2019 ◽  
Vol 68 (6) ◽  
pp. 060602
Author(s):  
Kang Ying ◽  
You-Zhen Gui ◽  
Yan-Guang Sun ◽  
Nan Cheng ◽  
Xiao-Feng Xiong ◽  
...  

Author(s):  
Martha I. Bodine ◽  
Jennifer L. Ellis ◽  
William C. Swann ◽  
Sarah A. Stevenson ◽  
Jean-Daniel Deschenes ◽  
...  

Author(s):  
Wenxue Liu ◽  
Hong Yuan ◽  
Jian Ge ◽  
Ying Xu

Abstract Unlike other satellite navigation systems such as GPS (Global Positioning System), the BeiDou satellite navigation system broadcasts RDSS (Radio Determination Satellite Service) and RNSS (Radio Navigation Satellite Service) signals simultaneously on its GEO (geostationary earth orbit) satellites and provides related navigation services. This paper studies the method of using the RDSS and RNSS signals of BeiDou to achieve accurate frequency and time transmission. We analyze the generation mechanism of RDSS signal and RNSS signal of BeiDou GEO satellite, establish a mathematical model of RDSS and RNSS signal frequency transfer, and derive an equation based on BeiDou’s RDSS and RNSS signals for accurate frequency and time transmission. We also verified the relevant performance of the method through computer simulation. The results show that the combination of RDSS and RNSS signals from the BeiDou satellite system provides a new solution for its application in precise time and frequency transmission. This method is different from other satellite navigation systems such as GPS and is unique to the BeiDou system, with high accuracy and low dependence on satellite orbit accuracy.


Author(s):  
Qin Liu ◽  
Sheng Long Han ◽  
Wang Jialiang ◽  
Feng Zitong ◽  
Wei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document