scholarly journals Enhancing Generalizability of Predictive Models with Synergy of Data and Physics

Author(s):  
Yingjun Shen ◽  
Zhe Song ◽  
Andrew Kusiak

Abstract Wind farm needs prediction models for predictive maintenance. There is a need to predict values of non-observable parameters beyond ranges reflected in available data. A prediction model developed for one machine many not perform well in another similar machine. This is usually due to lack of generalizability of data-driven models. To increase generalizability of predictive models, this research integrates the data mining with first-principle knowledge. Physics-based principles are combined with machine learning algorithms through feature engineering, strong rules and divide-and-conquer. The proposed synergy concept is illustrated with the wind turbine blade icing prediction and achieves significant prediction accuracy across different turbines. The proposed process is widely accepted by wind energy predictive maintenance practitioners because of its simplicity and efficiency. Furthermore, the testing scores of KNN, CART and DNN algorithm are increased by 44.78%, 32.72% and 9.13% with our proposed process. We demonstrated the importance of embedding physical principles within the machine learning process, and also highlight an important point that the need for more complex machine learning algorithms in industrial big data mining is often much less than it is in other applications, making it essential to incorporate physics and follow “Less is More” philosophy.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitalization are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predictors of hospitalization. Methods Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared and we also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis and the five best performing algorithms were combined in an ensemble model using stacking. Results All models performed above chance level. We found Gradient Boosting to be the best performing algorithm (AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improvement analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.


World Health Organization’s (WHO) report 2018, on diabetes has reported that the number of diabetic cases has increased from one hundred eight million to four hundred twenty-two million from the year 1980. The fact sheet shows that there is a major increase in diabetic cases from 4.7% to 8.5% among adults (18 years of age). Major health hazards caused due to diabetes include kidney function failure, heart disease, blindness, stroke, and lower limb dismembering. This article applies supervised machine learning algorithms on the Pima Indian Diabetic dataset to explore various patterns of risks involved using predictive models. Predictive model construction is based upon supervised machine learning algorithms: Naïve Bayes, Decision Tree, Random Forest, Gradient Boosted Tree, and Tree Ensemble. Further, the analytical patterns about these predictive models have been presented based on various performance parameters which include accuracy, precision, recall, and F-measure.


Student Performance Management is one of the key pillars of the higher education institutions since it directly impacts the student’s career prospects and college rankings. This paper follows the path of learning analytics and educational data mining by applying machine learning techniques in student data for identifying students who are at the more likely to fail in the university examinations and thus providing needed interventions for improved student performance. The Paper uses data mining approach with 10 fold cross validation to classify students based on predictors which are demographic and social characteristics of the students. This paper compares five popular machine learning algorithms Rep Tree, Jrip, Random Forest, Random Tree, Naive Bayes algorithms based on overall classifier accuracy as well as other class specific indicators i.e. precision, recall, f-measure. Results proved that Rep tree algorithm outperformed other machine learning algorithms in classifying students who are at more likely to fail in the examinations.


Author(s):  
Jakub Gęca

The consequences of failures and unscheduled maintenance are the reasons why engineers have been trying to increase the reliability of industrial equipment for years. In modern solutions, predictive maintenance is a frequently used method. It allows to forecast failures and alert about their possibility. This paper presents a summary of the machine learning algorithms that can be used in predictive maintenance and comparison of their performance. The analysis was made on the basis of data set from Microsoft Azure AI Gallery. The paper presents a comprehensive approach to the issue including feature engineering, preprocessing, dimensionality reduction techniques, as well as tuning of model parameters in order to obtain the highest possible performance. The conducted research allowed to conclude that in the analysed case , the best algorithm achieved 99.92% accuracy out of over 122 thousand test data records. In conclusion, predictive maintenance based on machine learning represents the future of machine reliability in industry.


Author(s):  
Ruchika Malhotra ◽  
Anuradha Chug

Software maintenance is an expensive activity that consumes a major portion of the cost of the total project. Various activities carried out during maintenance include the addition of new features, deletion of obsolete code, correction of errors, etc. Software maintainability means the ease with which these operations can be carried out. If the maintainability can be measured in early phases of the software development, it helps in better planning and optimum resource utilization. Measurement of design properties such as coupling, cohesion, etc. in early phases of development often leads us to derive the corresponding maintainability with the help of prediction models. In this paper, we performed a systematic review of the existing studies related to software maintainability from January 1991 to October 2015. In total, 96 primary studies were identified out of which 47 studies were from journals, 36 from conference proceedings and 13 from others. All studies were compiled in structured form and analyzed through numerous perspectives such as the use of design metrics, prediction model, tools, data sources, prediction accuracy, etc. According to the review results, we found that the use of machine learning algorithms in predicting maintainability has increased since 2005. The use of evolutionary algorithms has also begun in related sub-fields since 2010. We have observed that design metrics is still the most favored option to capture the characteristics of any given software before deploying it further in prediction model for determining the corresponding software maintainability. A significant increase in the use of public dataset for making the prediction models has also been observed and in this regard two public datasets User Interface Management System (UIMS) and Quality Evaluation System (QUES) proposed by Li and Henry is quite popular among researchers. Although machine learning algorithms are still the most popular methods, however, we suggest that researchers working on software maintainability area should experiment on the use of open source datasets with hybrid algorithms. In this regard, more empirical studies are also required to be conducted on a large number of datasets so that a generalized theory could be made. The current paper will be beneficial for practitioners, researchers and developers as they can use these models and metrics for creating benchmark and standards. Findings of this extensive review would also be useful for novices in the field of software maintainability as it not only provides explicit definitions, but also lays a foundation for further research by providing a quick link to all important studies in the said field. Finally, this study also compiles current trends, emerging sub-fields and identifies various opportunities of future research in the field of software maintainability.


2019 ◽  
Vol 20 (3) ◽  
pp. 177-184 ◽  
Author(s):  
Nantao Zheng ◽  
Kairou Wang ◽  
Weihua Zhan ◽  
Lei Deng

Background:Targeting critical viral-host Protein-Protein Interactions (PPIs) has enormous application prospects for therapeutics. Using experimental methods to evaluate all possible virus-host PPIs is labor-intensive and time-consuming. Recent growth in computational identification of virus-host PPIs provides new opportunities for gaining biological insights, including applications in disease control. We provide an overview of recent computational approaches for studying virus-host PPI interactions.Methods:In this review, a variety of computational methods for virus-host PPIs prediction have been surveyed. These methods are categorized based on the features they utilize and different machine learning algorithms including classical and novel methods.Results:We describe the pivotal and representative features extracted from relevant sources of biological data, mainly include sequence signatures, known domain interactions, protein motifs and protein structure information. We focus on state-of-the-art machine learning algorithms that are used to build binary prediction models for the classification of virus-host protein pairs and discuss their abilities, weakness and future directions.Conclusion:The findings of this review confirm the importance of computational methods for finding the potential protein-protein interactions between virus and host. Although there has been significant progress in the prediction of virus-host PPIs in recent years, there is a lot of room for improvement in virus-host PPI prediction.


Sign in / Sign up

Export Citation Format

Share Document