Fabrication of large scale uniform copper-island thin film for ultrasensitive surface enhanced Raman scattering

2020 ◽  
Vol 31 (30) ◽  
pp. 305302
Author(s):  
Qun Sun ◽  
Ling Zhang ◽  
Luyi Huang ◽  
Ronghui Cai ◽  
Deng Pan ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 458
Author(s):  
Datai Hui ◽  
Shun Zhou ◽  
Changlong Cai ◽  
Shigeng Song ◽  
Zhentao Wu ◽  
...  

The growth mechanism of nanocolumnar silver thin film deposited on a smooth silicon substrate using electron beam evaporation process at an oblique angle was simulated with the Kinetic Monte Carlo method. Following the simulated silver nanostructured thin film, a further computational simulation was done using COMSOL for surface-enhanced Raman scattering effects. The simulation results were compared against corresponding experimental results, which demonstrated high agreement between simulation results and experimental data. It was found that as the incident deposition angle increased, the density of the Ag thin film significantly decreased and the surface roughness increased. When the incident deposition angle was at 75° and 85°, the resulting nanocolumnar structure was significantly tilted. For Ag thin films deposited at all investigated angles, surface-enhanced Raman scattering effects were observed. Particularly, the Ag nanocolumns deposited at 85° showed remarkable Surface-enhanced Raman Scattering effects. This was seen in both COMSOL simulations and experimental results: Enhancement factors were 2 × 107 in COMSOL simulation and 3.3 × 105 in the experiment.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 520 ◽  
Author(s):  
Jia Zhu ◽  
Guanzhou Lin ◽  
Meizhang Wu ◽  
Zhuojie Chen ◽  
Peimin Lu ◽  
...  

Technology transfer from laboratory into practical application needs to meet the demands of economic viability and operational simplicity. This paper reports a simple and convenient strategy to fabricate large-scale and ultrasensitive surface-enhanced Raman scattering (SERS) substrates. In this strategy, no toxic chemicals or sophisticated instruments are required to fabricate the SERS substrates. On one hand, Ag nanoparticles (NPs) with relatively uniform size were synthesized using the modified Tollens method, which employs an ultra-low concentration of Ag+ and excessive amounts of glucose as a reducing agent. On the other hand, when a drop of the colloidal Ag NPs dries on a horizontal solid surface, the droplet becomes ropy, turns into a layered structure under gravity, and hardens. During evaporation, capillary flow was burdened by viscidity resistance from the ropy glucose solution. Thus, the coffee-ring effect is eliminated, leading to a uniform deposition of Ag NPs. With this method, flat Ag NPs-based SERS active films were formed in array-well plates defined by hole-shaped polydimethylsiloxane (PDMS) structures bonded on glass substrates, which were made for convenient detection. The strong SERS activity of these substrates allowed us to reach detection limits down to 10−14 M of Rhodamine 6 G and 10−10 M of thiram (pesticide).


Sign in / Sign up

Export Citation Format

Share Document