scholarly journals Global stability for the three-dimensional logistic map

Nonlinearity ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 894-938
Author(s):  
János Dudás ◽  
Tibor Krisztin
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Guodong Ye ◽  
Kaixin Jiao ◽  
Chen Pan ◽  
Xiaoling Huang

In this paper, an effective framework for chaotic encryption based on a three-dimensional logistic map is presented together with secure hash algorithm-3 (SHA-3) and electrocardiograph (ECG) signal. Following the analysis of the drawbacks, namely, fixed key and low sensitivity, of some current algorithms, this work tries to solve these two problems and includes two contributions: (1) removal of the phenomenon of summation invariance in a plain-image, for which SHA-3 is proposed to calculate the hash value for the plain-image, with the results being employed to influence the initial keys for chaotic map; (2) resolution of the problem of fixed key by using an ECG signal, that can be different for different subjects or different for same subject at different times. The Wolf algorithm is employed to produce all the control parameters and initial keys in the proposed encryption method. It is believed that combining with the classical architecture of permutation-diffusion, the summation invariance in the plain-image and shortcoming of a fixed key will be avoided in our algorithm. Furthermore, the experimental results and security analysis show that the proposed encryption algorithm can achieve confidentiality.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xuan Huang ◽  
Lingfeng Liu ◽  
Xiangjun Li ◽  
Minrong Yu ◽  
Zijie Wu

Given that the sequences generated by logistic map are unsecure with a number of weaknesses, including its relatively small key space, uneven distribution, and vulnerability to attack by phase space reconstruction, this paper proposes a new two-dimensional mutual coupled logistic map, which can overcome these weaknesses. Our two-dimensional chaotic map model is simpler than the recently proposed three-dimensional coupled logistic map, whereas the sequence generated by our system is more complex. Furthermore, a new kind of pseudorandom number generator (PRNG) based on the mutual coupled logistic maps is proposed for application. Both statistical tests and security analysis show that our proposed PRNG has good randomness and that it can resist all kinds of attacks. The algorithm speed analysis indicates that PRNG is valuable to practical applications.


2014 ◽  
Vol 24 (06) ◽  
pp. 1430017 ◽  
Author(s):  
M. Fernández-Guasti

The quadratic iteration is mapped using a nondistributive real scator algebra in three dimensions. The bound set S has a rich fractal-like boundary. Periodic points on the scalar axis are necessarily surrounded by off axis divergent magnitude points. There is a one-to-one correspondence of this set with the bifurcation diagram of the logistic map. The three-dimensional S set exhibits self-similar 3D copies of the elementary fractal along the negative scalar axis. These 3D copies correspond to the windows amid the chaotic behavior of the logistic map. Nonetheless, the two-dimensional projection becomes identical to the nonfractal quadratic iteration produced with hyperbolic numbers. Two- and three-dimensional renderings are presented to explore some of the features of this set.


2017 ◽  
Vol 22 (11) ◽  
pp. 0-0
Author(s):  
Rafael Luís ◽  
◽  
Sandra Mendonça ◽  

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 504 ◽  
Author(s):  
Wei Zhang ◽  
Zhiliang Zhu ◽  
Hai Yu

In this paper, the properties of the classical confusion–substitution structure and some recently proposed pseudorandom number generators using one-dimensional chaotic maps are investigated. To solve the low security problem of the original structure, a new bit-level cellular automata strategy is used to improve the sensitivity to the cryptosystem. We find that the new evolution effects among different generations of cells in cellular automata can significantly improve the diffusion effect. After this, a new one-dimensional chaotic map is proposed, which is constructed by coupling the logistic map and the Bernoulli map (LBM). The new map exhibits a much better random behavior and is more efficient than comparable ones. Due to the favorable properties of the new map and cellular automata algorithm, we propose a new image-encryption algorithm in which three-dimensional bit-level permutation with LBM is employed in the confusion phase. Simulations are carried out, and the results demonstrate the superior security and high efficiency of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document