Three-Dimensional Global Stability on Stuart Vortex of Free Shear Layer

Author(s):  
Aiko Yakeno ◽  
Makoto Hirota
1998 ◽  
Vol 369 ◽  
pp. 49-89 ◽  
Author(s):  
A. J. RILEY ◽  
M. V. LOWSON

Experiments have been undertaken to characterize the flow field over a delta wing, with an 85° sweep angle, at 12.5° incidence. Application of a laser Doppler anemometer has enabled detailed three-dimensional velocity data to be obtained within the free shear layer, revealing a system of steady co-rotating vortical structures. These sub-vortex structures are associated with low-momentum flow pockets in the separated vortex flow. The structures are found to be dependent on local Reynolds number, and undergo transition to turbulence. The structural features disappear as the sub-vortices are wrapped into the main vortex core. A local three-dimensional Kelvin–Helmholtz-type instability is suggested for the formation of these vortical structures in the free shear layer. This instability has parallels with the cross-flow instability that occurs in three-dimensional boundary layers. Velocity data at high Reynolds numbers have shown that the sub-vortical structures continue to form, consistent with flow visualization results over fighter aircraft at flight Reynolds numbers.


2001 ◽  
Vol 427 ◽  
pp. 329-358 ◽  
Author(s):  
A. P. JACKSON ◽  
R. HILLIER ◽  
S. SOLTANI

This paper presents a combined experimental/computational study of a surface cavity in a low Reynolds number Mach 9 flow. The geometry is based on a body of revolution, which produces highly two-dimensional time-averaged flow for all experimental test cases. A range of cavity length-to-depth ratios, up to a maximum of 8, is investigated. These correspond to ‘closed’ cavity flows, with the free shear layer bridging the entire cavity. For most cases the free shear layer is laminar. However, there is evidence of three-dimensional unsteadiness which is believed to be the consequence of Taylor–Görtler-type vortex formation. The effect of this is first detected on the cavity floor but progressively spreads as the cavity length is increased. For the longest cavities the flow is also influenced by the early stages of laminar–turbulent transition in the free shear layer.


1980 ◽  
Vol 102 (2) ◽  
pp. 219-222 ◽  
Author(s):  
J. A. Clark ◽  
Lam Kit

The present experiments provide information about free shear layer transition to turbulence and the associated three-dimensional behavior patterns of vortex growth and breakdown. The free shear layers of a submerged jet were generated from two-dimensional sharp-edged orifices. Two distinct types of growth patterns, namely, the twisting growth pattern and the interlocking growth pattern were observed. The interaction phenomena of these vortex tubes are hypothesized to be associated with mutual induction. Quantitative data of exit central velocity, pre-coalescent wavelength between consecutive vortices, and vortex shedding frequency were measured and the interrelationships of Strouhal number, Reynolds number and the dimensionless convection velocity of vortices are discussed.


1988 ◽  
Vol 189 ◽  
pp. 53-86 ◽  
Author(s):  
J. C. Lasheras ◽  
H. Choi

The three-dimensional development of a plane free shear layer subjected to small sinusoidal perturbations periodically placed along the span is experimentally studied. Both laser induced fluorescence and direct interface visualization are used to monitor the interface between the two fluids. The development of the different flow stabilities is obtained through analysis of the temporal and spatial evolution of the interface separating the two streams. It is shown that the characteristic time of growth of the two-dimensional shear instability is much shorter than that of the three-dimensional instability. The primary Kelvin-Helmholtz instability develops first, leading to the formation of an almost two-dimensional array of spanwise vortex tubes. Under the effect of the strain field created by the evolving spanwise vortices, the perturbed vorticity existing on the braids undergoes axial stretching, resulting in the formation of vortex tubes whose axes are aligned with the principal direction of the positive strain field. During the formation of these streamwise vortex tubes, the spanwise vortices maintain, to a great extent, their two-dimensionality, suggesting an almost uncoupled development of both instabilities. The vortex tubes formed through the three-dimensional instability of the braids further undergo nonlinear interactions with the spanwise vortices inducing on their cores a wavy undulation of the same wavelength, but 180° phase shifted with respect to the perturbation. In addition, it is shown that owing to the nature of the three-dimensional instability, the effect of vertical and axial perturbations are coupled. Finally, the influence of the amplitude and wavelength of the perturbation on the development of the two- and three-dimensional instabilities is described.


2014 ◽  
Vol 760 ◽  
pp. 175-211 ◽  
Author(s):  
Jean-Christophe Loiseau ◽  
Jean-Christophe Robinet ◽  
Stefania Cherubini ◽  
Emmanuel Leriche

AbstractThe linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height $h$ and diameter $d$ immersed within an incompressible boundary layer flow along a flat plate is investigated using the joint application of direct numerical simulations and fully three-dimensional global stability analyses. For the range of parameters investigated, base flow computations show that the roughness element induces a wake composed of a central low-speed region surrounded by a three-dimensional shear layer and a pair of low- and high-speed streaks on each of its sides. Results from the global stability analyses highlight the unstable nature of the central low-speed region and its crucial importance in the laminar–turbulent transition process. It is able to sustain two different global instabilities: a sinuous and a varicose one. Each of these globally unstable modes is related to a different physical mechanism. While the varicose mode has its root in the instability of the whole three-dimensional shear layer surrounding the central low-speed region, the sinuous instability turns out to be similar to the von Kármán instability in the two-dimensional cylinder wake and has its root in the lateral shear layers of the separated zone. The aspect ratio of the roughness element plays a key role on the selection of the dominant instability: whereas the flow over thin cylindrical roughness elements transitions due to a sinuous instability of the near-wake region, for larger roughness elements the varicose instability of the central low-speed region turns out to be the dominant one. Direct numerical simulations of the flow past an aspect ratio ${\it\eta}=1$ (with ${\it\eta}=d/h$) roughness element sustaining only the sinuous instability have revealed that the bifurcation occurring in this particular case is supercritical. Finally, comparison of the transition thresholds predicted by global linear stability analyses with the von Doenhoff–Braslow transition diagram provides qualitatively good agreement.


2009 ◽  
Vol 620 ◽  
pp. 195-220 ◽  
Author(s):  
K. LAM ◽  
Y. F. LIN

Three-dimensional numerical simulations of laminar flow around a circular cylinder with sinusoidal variation of cross-section along the spanwise direction, named ‘wavy cylinder’, are performed. A series of wavy cylinders with different combinations of dimensionless wavelength (λ/Dm) and wave amplitude (a/Dm) are studied in detail at a Reynolds number of Re = U∞Dm/ν = 100, where U∞ is the free-stream velocity and Dm is the mean diameter of a wavy cylinder. The results of variation of mean drag coefficient and root mean square (r.m.s.) lift coefficient with dimensionless wavelength show that significant reduction of mean and fluctuating force coefficients occurs at optimal dimensionless wavelengths λ/Dm of around 2.5 and 6 respectively for the different amplitudes studied. Based on the variation of flow structures and force characteristics, the dimensionless wavelength from λ/Dm = 1 to λ/Dm = 10 is classified into three wavelength regimes corresponding to three types of wake structures. The wake structures at the near wake of different wavy cylinders are captured. For all wavy cylinders, the flow separation line varies along the spanwise direction. This leads to the development of a three-dimensional free shear layer with periodic repetition along the spanwise direction. The three-dimensional free shear layer of the wavy cylinder is larger and more stable than that of the circular cylinder, and in some cases the free shear layer even does not roll up into a mature vortex street behind the cylinder. As a result, the mean drag coefficients of some of the typical wavy cylinders are less than that of a corresponding circular cylinder with a maximum drag coefficient reduction up to 18%. The r.m.s. lift coefficients are greatly reduced to practically zero at optimal wavelengths. In the laminar flow regime (60 ≤ Re ≤ 150), the values of optimal wavelength are Reynolds number dependent.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Shawn Aram

Abstract It has become apparent recently that the fluidic oscillators, also known as sweeping jets, can be used to create a combination of steady (streamwise vortices) and unsteady (spanwise vortices) forcing mechanisms which have the potential to fulfill many of the promises of active separation control. The fluidic oscillators contain no moving parts, but produce an unsteady component via a natural feedback loop inherent to their geometry. The oscillations are entirely self-induced and self-sustaining. Their simple and robust design and their effectiveness over a wide range of flow conditions make them more attractive than other flow control devices, such as synthetic jets and plasma actuators. Figure 1 shows the instantaneous jet generated in quiescent environment using the Improved Delayed Detached Eddy Simulation (IDDES) model, where the Large Eddy Simulation (LES) branch of the IDDES model is able to capture the turbulence structures properly. An instantaneous iso-surface of vorticity magnitude, colored by streamwise velocity for flow over a wall-mounted hump is depicted in Figure 2. As expected, a massive flow separation occurs behind the hump in the uncontrolled condition (Figure 2 (a)), with a nearly two-dimensional free shear layer at the edge of the separation line. Breakdown of the shear layer by an array of sweeping jets located slightly downstream of the separation line is seen in Figure 2 (b), which is followed by the elimination of the separation region behind hump. The three-dimensional structures generated by the sweeping jets are smaller and closer to the hump wall than those produced by the steady jets shown in Figure 2 (c). Presence of a large region of reversed flow near the hump wall in its aft section is also seen in the case of the steady jet. This study indicates a superior effectiveness of sweeping jets on separated flows.


1969 ◽  
Vol 38 (4) ◽  
pp. 765-767 ◽  
Author(s):  
A. Michalke

It does not seem to be possible to prove analytically that an incompressible, inviscid free shear layer is less unstable with respect to spatially growing three-dimensional disturbances than to two-dimensional ones. For this reason a numerical calculation for the special case of the hyperbolic tangent velocity profile was performed. It was found that even for spatially growing disturbances the amplification of three-dimensional disturbances is smaller than for two-dimensional ones.


1992 ◽  
Vol 241 ◽  
pp. 469-502 ◽  
Author(s):  
A. A. Bidokhti ◽  
D. J. Tritton

An experimental investigation has been carried out on the effects of rotation on the development and structure of turbulence in a free shear layer, oriented so that its mean vorticity is parallel or antiparallel to the system vorticity. The effective local Rossby number extended down to about 1/3. The experimental methods were hydrogen-bubble flow visualization and hot-film anemometry.In summarizing the results we refer to stabilized flow when the system vorticity has the same sign as the shear vorticity and destabilized and subsequently restabilized when it has the opposite sign (Tritton 1992). The roller eddy pattern, familiar in non-rotating flow, was observed in all stabilized flows, but was almost completely disrupted by even weak destabilization. Notable features of the quantitative results were: reorientation by Coriolis effects of the Reynolds stress tensor (inferred from the ratio of the cross-stream to longitudinal turbulence intensity and the normalized shear stress); changes in the ratio of spanwise to longitudinal intensity similar to but weaker than changes in the ratio of cross-stream to longitudinal; a gradual decrease, with increasing stabilization, of the Reynolds shear stress leading ultimately to its changing sign; an increase of the Reynolds shear stress in the destabilized range followed by rapid collapse to almost zero with restabilization. Absolute intensities did not change in line with the turbulence energy production, implying enhancement of dissipation in destabilized flow and inhibition in stabilized and restabilized. Correlation measurements indicated changes of lengthscale in the spanwise direction, and spectra indicated changes in the longitudinal direction that suggest that this enhancement and inhibition are associated with variations between fully three-dimensional and partially two-dimensional turbulence. Data for a wake in a rotating fluid (Witt & Joubert 1985) show similarities to some of the above observations and can be incorporated into the interpretation.


1971 ◽  
Vol 49 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Kanefusa Gotoh

The effect of a uniform and parallel magnetic field upon the stability of a free shear layer of an electrically conducting fluid is investigated. The equations of the velocity and the magnetic disturbances are solved numerically and it is shown that the flow is stabilized with increasing magnetic field. When the magnetic field is expressed in terms of the parameter N (= M2/R2), where M is the Hartmann number and R is the Reynolds number, the lowest critical Reynolds number is caused by the two-dimensional disturbances. So long as 0 [les ] N [les ] 0·0092 the flow is unstable at all R. For 0·0092 < N [les ] 0·0233 the flow is unstable at 0 < R < Ruc where Ruc decreases as N increases. For 0·0233 < N < 0·0295 the flow is unstable at Rlc < R < Ruc where Rlc increases with N. Lastly for N > 0·0295 the flow is stable at all R. When the magnetic field is measured by M, the lowest critical Reynolds number is still due to the two-dimensional disturbances provided 0 [les ] M [les ] 0·52, and Rc is given by the corresponding Rlc. For M > 0·52, Rc is expressed as Rc = 5·8M, and the responsible disturbance is the three-dimensional one which propagates at angle cos−1(0·52/M) to the direction of the basic flow.


Sign in / Sign up

Export Citation Format

Share Document