scholarly journals Asymptotic limits for a nonlinear integro-differential equation modelling leukocytes’ rolling on arterial walls

Nonlinearity ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 843-869
Author(s):  
Vuk Milišić ◽  
Christian Schmeiser

Abstract We consider a nonlinear integro-differential model describing z, the position of the cell center on the real line presented in Grec et al (2018 J. Theor. Biol. 452 35–46). We introduce a new ɛ-scaling and we prove rigorously the asymptotics when ɛ goes to zero. We show that this scaling characterizes the long-time behavior of the solutions of our problem in the cinematic regime (i.e. the velocity z ˙ tends to a limit). The convergence results are first given when ψ, the elastic energy associated to linkages, is convex and regular (the second order derivative of ψ is bounded). In the absence of blood flow, when ψ, is quadratic, we compute the final position z ∞ to which we prove that z tends. We then build a rigorous mathematical framework for ψ being convex but only Lipschitz. We extend convergence results with respect to ɛ to the case when ψ′ admits a finite number of jumps. In the last part, we show that in the constant force case [see model 3 in Grec et al (2018 J. Theor. Biol. 452 35–46), i.e. ψ is the absolute value)] we solve explicitly the problem and recover the above asymptotic results.

2019 ◽  
Vol 3 (1) ◽  
pp. 312
Author(s):  
Minh-Phuong Tran ◽  
Thanh-Nhan Nguyen

In this paper, we prove the long time behavior of bounded solutions to a first order gradient-like system with low damping and perturbation terms. Our convergence results are obtained under some hypotheses of KurdykaLojasiewicz inequality and the angle and comparability condition.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


2013 ◽  
Vol 45 (03) ◽  
pp. 822-836 ◽  
Author(s):  
Pierre Collet ◽  
Servet Martínez ◽  
Sylvie Méléard ◽  
Jaime San Martín

We introduce two stochastic chemostat models consisting of a coupled population-nutrient process reflecting the interaction between the nutrient and the bacteria in the chemostat with finite volume. The nutrient concentration evolves continuously but depends on the population size, while the population size is a birth-and-death process with coefficients depending on time through the nutrient concentration. The nutrient is shared by the bacteria and creates a regulation of the bacterial population size. The latter and the fluctuations due to the random births and deaths of individuals make the population go almost surely to extinction. Therefore, we are interested in the long-time behavior of the bacterial population conditioned to nonextinction. We prove the global existence of the process and its almost-sure extinction. The existence of quasistationary distributions is obtained based on a general fixed-point argument. Moreover, we prove the absolute continuity of the nutrient distribution when conditioned to a fixed number of individuals and the smoothness of the corresponding densities.


Sign in / Sign up

Export Citation Format

Share Document