Impact of image pre-processing methods on computed tomography radiomics features in chronic obstructive pulmonary disease

Author(s):  
Ryan C Au ◽  
Wan C Tan ◽  
Jean Bourbeau ◽  
James C Hogg ◽  
Miranda Kirby

Abstract Computed tomography (CT) imaging texture-based radiomics analysis can be used to assess chronic obstructive pulmonary disease (COPD). However, different image pre-processing methods are commonly used, and how these different methods impact radiomics features and lung disease assessment, is unknown. The purpose of this study was to develop an image pre-processing pipeline to investigate how various pre-processing combinations impact radiomics features and their use for COPD assessment. Spirometry and CT images were obtained from the multi-centered Canadian Cohort of Obstructive Lung Disease study. Participants were divided based on assessment site and were further dichotomized as No COPD or COPD within their participant groups. An image pre-processing pipeline was developed, calculating 32 grey level co-occurrence matrix radiomics features. The pipeline included lung segmentation, airway segmentation or no segmentation, image resampling or no resampling, and either no pre-processing, binning, edgmentation, or thresholding pre-processing techniques. A three-way analysis of variance was used for method comparison. A nested 10-fold cross validation using logistic regression and multiple linear regression models were constructed to classify COPD and assess correlation with lung function, respectively. Logistic regression performance was evaluated using the area under the receiver operating characteristic curve (AUC). A total of 1210 participants (Sites 1-8: No COPD: n=447, COPD: n=413; and Site 9: No COPD: n=155, COPD: n=195) were evaluated. Between the two participant groups, at least 16/32 features were different between airway segmentation/no segmentation (P≤0.04), at least 29/32 features were different between no resampling/resampling (P≤0.04), and 32/32 features were different between the pre-processing techniques (P<0.0001). Features generated using the resampling/edgmentation and resampling/thresholding pre-processing combinations, regardless of airway segmentation, performed the best in COPD classification (AUC≥0.718), and explained the most variance with lung function (R2≥0.353). Therefore, the image pre-processing methods completed prior to CT radiomics feature extraction significantly impacted extracted features and their ability to assess COPD.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
So Hyeon Bak ◽  
Sung Ok Kwon ◽  
Seon-Sook Han ◽  
Woo Jin Kim

Abstract Background Muscle wasting is associated with prognosis in patients with chronic obstructive pulmonary disease (COPD). The cross-sectional area of skeletal muscles on computed tomography (CT) could serve as a method to evaluate body composition. The present study aimed to determine the ability of CT-derived pectoralis muscle area (PMA) and pectoralis muscle density (PMD) to determine the severity of COPD and change in longitudinal pulmonary function in patients with COPD. Methods A total of 293 participants were enrolled in this study, a whom 222 had undergone at least two spirometry measurements within 3 years after baseline data acquisition. PMA and PMD were measured from a single axial slice of chest CT above the aortic arch at baseline. The emphysema index and bronchial wall thickness were quantitatively assessed in all scans. The generalized linear model was used to determine the correlation between PMA and PMD measurements and pulmonary function. Results PMA and PMD were significantly associated with baseline lung function and the severity of emphysema (P < 0.05). Patients with the lowest PMA and PMD exhibited significantly more severe airflow obstruction (β = − 0.06; 95% confidence interval: − 0.09 to − 0.03]. PMA was statistically associated with COPD assessment test (CAT) score (P = 0.033). However, PMD did not exhibit statistically significant correlation with either CAT scores or modified Medical Research Council scores (P > 0.05). Furthermore, neither PMA nor PMD were associated with changes in forced expiratory volume in 1 s over a 3-year periods. Conclusions CT-derived features of the pectoralis muscle may be helpful in predicting disease severity in patients with COPD, but are not necessarily associated with longitudinal changes in lung function.


Sign in / Sign up

Export Citation Format

Share Document