All-optical cascaded ion acceleration in segmented tubes driven by multiple independent laser pulses

2019 ◽  
Vol 61 (11) ◽  
pp. 115005
Author(s):  
H He ◽  
B Qiao ◽  
X F Shen ◽  
W P Yao ◽  
Y L Yao ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


2021 ◽  
Vol 28 (2) ◽  
pp. 023102
Author(s):  
X. Z. Wu ◽  
Z. Gong ◽  
Y. R. Shou ◽  
Y. H. Tang ◽  
J. Q. Yu ◽  
...  

2009 ◽  
Vol 16 (8) ◽  
pp. 083103 ◽  
Author(s):  
T. Schlegel ◽  
N. Naumova ◽  
V. T. Tikhonchuk ◽  
C. Labaune ◽  
I. V. Sokolov ◽  
...  

2018 ◽  
Vol 25 (8) ◽  
pp. 083113 ◽  
Author(s):  
M. Tayyab ◽  
S. Bagchi ◽  
J. A. Chakera ◽  
R. A. Khan ◽  
P. A. Naik

Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2351-2359
Author(s):  
Hao Ouyang ◽  
Haitao Chen ◽  
Yuxiang Tang ◽  
Jun Zhang ◽  
Chenxi Zhang ◽  
...  

AbstractStrong quantum confinement and coulomb interactions induce tightly bound quasiparticles such as excitons and trions in an atomically thin layer of transitional metal dichalcogenides (TMDs), which play a dominant role in determining their intriguing optoelectronic properties. Thus, controlling the excitonic properties is essential for the applications of TMD-based devices. Here, we demonstrate the all-optical tuning of the local excitonic emission from a monolayer MoS2 hybridized with phase-change material Ge2Sb2Te5 (GST) thin film. By applying pulsed laser with different power on the MoS2/GST heterostructure, the peak energies of the excitonic emission of MoS2 can be tuned up to 40 meV, and the exciton/trion intensity ratio can be tuned by at least one order of magnitude. Raman spectra and transient pump-probe measurements show that the tunability originated from the laser-induced phase change of the GST thin film with charge transferring from GST to the monolayer MoS2. The dynamic tuning of the excitonic emission was all done with localized laser pulses and could be scaled readily, which pave a new way of controlling the excitonic emission in TMDs. Our findings could be potentially used as all-optical modulators or switches in future optical networks.


Optica ◽  
2021 ◽  
Author(s):  
William Peters ◽  
Travis Jones ◽  
Anatoly Efimov ◽  
Emanuele Pedersoli ◽  
Laura Foglia ◽  
...  

2018 ◽  
Vol 32 (28) ◽  
pp. 1830003 ◽  
Author(s):  
G. P. Zhang ◽  
M. Murakami ◽  
M. S. Si ◽  
Y. H. Bai ◽  
Thomas F. George

Information technology depends on how one can control and manipulate signals accurately and quickly. Transistors are at the core of modern technology and are based on electron charges. But as the device dimension shrinks, heating becomes a major problem. The spintronics explores the spin degree of electrons and thus bypasses the heat, at least in principle. For this reason, spin-based technology offers a possible solution. In this review, we survey some of the latest developments in all-optical switching (AOS), where ultrafast laser pulses are able to reverse spins from one direction to the other deterministically. But AOS only occurs in a special group of magnetic samples and within a narrow window of laser parameters. Some samples need multiple pulses to switch spins, while others need a single-shot pulse. To this end, there are several models available, but the underlying mechanism is still under debate. This review is different from other prior reviews in two aspects. First, we sacrifice the completeness of reviewing existing studies, while focusing on a limited set of experimental results that are highly reproducible in different labs and provide actual switched magnetic domain images. Second, we extract the common features from existing experiments that are critical to AOS, without favoring a particular switching mechanism. We emphasize that given the limited experimental data, it is really premature to identify a unified mechanism. We compare these features with our own model prediction, without resorting to a phenomenological scheme. We hope that this review serves the broad readership well.


Author(s):  
J. Hornung ◽  
Y. Zobus ◽  
P. Boller ◽  
C. Brabetz ◽  
U. Eisenbarth ◽  
...  

We present a study of laser-driven ion acceleration with micrometre and sub-micrometre thick targets, which focuses on the enhancement of the maximum proton energy and the total number of accelerated particles at the PHELIX facility. Using laser pulses with a nanosecond temporal contrast of up to $10^{-12}$ and an intensity of the order of $10^{20}~\text{W}/\text{cm}^{2}$ , proton energies up to 93 MeV are achieved. Additionally, the conversion efficiency at $45^{\circ }$ incidence angle was increased when changing the laser polarization to p, enabling similar proton energies and particle numbers as in the case of normal incidence and s-polarization, but reducing the debris on the last focusing optic.


Sign in / Sign up

Export Citation Format

Share Document