scholarly journals Scissor-cross ionization injection in laser wakefield accelerators

Author(s):  
Jia Wang ◽  
Ming Zeng ◽  
Xiaoning Wang ◽  
Dazhang Li ◽  
Jie Gao

Abstract We propose to use a frequency doubled pulse colliding with the driving pulse at an acute angle to trigger ionization injection in a laser wakefield accelerator. This scheme effectively reduces the duration that injection occurs, thus high injection quality is obtained. Three-dimensional particle-in-cell simulations show that electron beams with energy of ~500 MeV, charge of ~40 pC, energy spread of ~1% and normalized emittance of a few millimeter milliradian can be produced by ~100 TW laser pulses. By adjusting the angle between the two pulses, the intensity of the trigger pulse and the gas dope ratio, the charge and energy spread of the electron beam can be controlled.

2021 ◽  
Vol 11 (6) ◽  
pp. 2560
Author(s):  
Lintong Ke ◽  
Changhai Yu ◽  
Ke Feng ◽  
Zhiyong Qin ◽  
Kangnan Jiang ◽  
...  

We demonstrate a simple but efficient way to optimize and improve the properties of laser-wakefield-accelerated electron beams (e beams) based on a controllable shock-induced density down-ramp injection that is achieved with an inserted tunable shock wave. The e beams are tunable from 400 to 800 MeV with charge ranges from 5 to 180 pC. e beams with high reproducibility (of ~95% in consecutive 100 shots) were produced in elaborate experiments with an average root- mean-square energy spread of 0.9% and an average divergence of 0.3 mrad. Three-dimensional particle-in-cell (PIC) simulations were also performed to accordingly verify and uncover the process of the injection and the acceleration. These tunable e beams will facilitate practical applications for advanced accelerator beam sources.


2021 ◽  
Author(s):  
Dong-Ning Yue ◽  
Min Chen ◽  
Yao Zhao ◽  
Pan-Fei Geng ◽  
Xiao-Hui Yuan ◽  
...  

Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas are studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S- polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.


2011 ◽  
Vol 107 (4) ◽  
Author(s):  
B. B. Pollock ◽  
C. E. Clayton ◽  
J. E. Ralph ◽  
F. Albert ◽  
A. Davidson ◽  
...  

2009 ◽  
Vol 27 (1) ◽  
pp. 3-7 ◽  
Author(s):  
W.-M. Wang ◽  
Z.-M. Sheng ◽  
J. Zhang

AbstractElectron injection into a laser wakefield by the colliding of two circularly polarized laser pulses is analyzed by the Hamiltonian approach and particle-in-cell simulations. If the pump pulse driving the laser wakefield is right-circularly-polarized, electron injection is found only when the counter-propagating injection pulse is left-circularly-polarized and vice versa. This holds when the injection pulse is at low intensity and has a frequency near the pump pulse frequency ω0. For a moderately intense injection pulse, even if the two pulses have the same polarization, electron injection is found but with less efficiency. It is also found that the injection pulse with the frequency within [0.5ω0,3ω0] can still create electron injection efficiently provided it has the opposite polarization with the pump pulse.


2003 ◽  
Vol 21 (4) ◽  
pp. 541-544 ◽  
Author(s):  
M. LONTANO ◽  
M. BORGHESI ◽  
S.V. BULANOV ◽  
T.Z. ESIRKEPOV ◽  
D. FARINA ◽  
...  

Low-frequency, relativistic, subcycle solitary waves are found in two-dimensional and three-dimensional particle-in-cell (PIC) numerical simulations, as a result of the interaction of ultrashort, high-intensity laser pulses with plasmas. Moreover, nondrifting, subcycle relativistic electromagnetic solitons have been obtained as solutions of the hydrodynamic equations for an electron–ion warm plasma, by assuming the quasi-neutrality character of the plasma response. In addition, the formation of long-living macroscopic soliton-like structures has been experimentally observed by means of the proton imaging diagnostics. Several common features result from these investigations, as, for example, the quasi-neutral plasma response to the soliton radiation, in the long-term evolution of the system, which leads to the almost complete expulsion of the plasma from the region where the electromagnetic radiation is concentrated, even at subrelativistic field intensity. The results of the theoretical investigations are reviewed with special attention to these similarities.


2004 ◽  
Vol 22 (4) ◽  
pp. 407-413 ◽  
Author(s):  
A.J.W. REITSMA ◽  
D.A. JAROSZYNSKI

The acceleration dynamics of electrons in a laser wakefield accelerator is discussed, in particular the coupling of longitudinal and transverse motion. This coupling effect is important for electrons injected with a velocity below the laser pulse group velocity. It is found that the electron bunch is adiabatically focused during the acceleration and that a finite bunch width contributes to bunch lengthening and growth of energy spread. These results indicate the importance of a small emittance for the injected electron bunch.


Author(s):  
M.J van der Wiel ◽  
O.J Luiten ◽  
G.J.H Brussaard ◽  
S.B van der Geer ◽  
W.H Urbanus ◽  
...  

External injection of electron bunches into laser-driven plasma waves so far has not resulted in ‘controlled’ acceleration, i.e. production of bunches with well-defined energy spread. Recent simulations, however, predict that narrow distributions can be achieved, provided the conditions for properly trapping the injected electrons are met. Under these conditions, injected bunch lengths of one to several plasma wavelengths are acceptable. This paper first describes current efforts to demonstrate this experimentally, using state-of-the-art radio frequency technology. The expected charge accelerated, however, is still low for most applications. In the second part, the paper addresses a number of novel concepts for significant enhancement of photo-injector brightness. Simulations predict that, once these concepts are realized, external injection into a wakefield accelerator will lead to accelerated bunch specs comparable to those of recent ‘laser-into-gasjet’ experiments, without the present irreproducibility of charge and final energy of the latter.


2008 ◽  
Vol 36 (4) ◽  
pp. 1124-1125
Author(s):  
J. F. Vieira ◽  
S. F. Martins ◽  
F. Fiuza ◽  
R. A. Fonseca ◽  
L. O. Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document