Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas

2021 ◽  
Author(s):  
Dong-Ning Yue ◽  
Min Chen ◽  
Yao Zhao ◽  
Pan-Fei Geng ◽  
Xiao-Hui Yuan ◽  
...  

Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas are studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S- polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.

2016 ◽  
Vol 34 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Ashutosh Sharma ◽  
Alexander Andreev

AbstractRecent advances in the production of high repetition, high power, and short laser pulse have enabled the generation of high-energy proton beam, required for technology and other medical applications. Here we demonstrate the effective laser driven proton acceleration from near-critical density hydrogen plasma by employing the short and intense laser pulse through three-dimensional (3D) particle-in-cell (PIC) simulation. The generation of strong magnetic field is demonstrated by numerical results and scaled with the plasma density and the electric field of laser. 3D PIC simulation results show the ring shaped proton density distribution where the protons are accelerated along the laser axis with fairly low divergence accompanied by off-axis beam of ring-like shape.


2007 ◽  
Vol 25 (3) ◽  
pp. 371-377 ◽  
Author(s):  
A. Karmakar ◽  
A. Pukhov

Three dimensional Particle-in-Cell (3D-PIC) simulations of electron acceleration in vacuum with radially polarized ultra-intense laser beams have been performed. It is shown that single-cycle laser pulses efficiently accelerate a single attosecond electron bunch to GeV energies. When multi-cycle laser pulses are used, one has to employ ionization of high-Z materials to inject electrons in the accelerating phase at the laser pulse maximum. In this case, a train of highly collimated attosecond electron bunches with a quasi-monoenergetic spectra is produced. A comparison with electron acceleration by Gaussian laser pulses has been done. It is shown that the radially polarized laser pulses are superior both in the maximum energy gain and in the quality of the produced electron beams.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elmina Kabouraki ◽  
Vasileia Melissinaki ◽  
Amit Yadav ◽  
Andrius Melninkaitis ◽  
Konstantina Tourlouki ◽  
...  

Abstract Optics manufacturing technology is predicted to play a major role in the future production of integrated photonic circuits. One of the major drawbacks in the realization of photonic circuits is the damage of optical materials by intense laser pulses. Here, we report on the preparation of a series of organic–inorganic hybrid photoresists that exhibit enhanced laser-induced damage threshold. These photoresists showed to be candidates for the fabrication of micro-optical elements (MOEs) using three-dimensional multiphoton lithography. Moreover, they demonstrate pattern ability by nanoimprint lithography, making them suitable for future mass production of MOEs.


Author(s):  
Mahsa Mehrangiz

Abstract With persistent progress in ultra-intense laser pulses, Coulomb explosion (CE) of spherical nanoclusters can in principle produce high-quality-quasi-monoenergetic ions. Focusing on using CE framework, in this paper, we have proposed a target scheme to accelerate light/heavy ions’ beam. The scheme relies on encapsulating a hollow Gold nanocluster inside a hollow proton-Carbon (HC) nanosphere. The ability of this suggestion has been simulated by the two-dimensional particle-in-cell code (EPOCH). Simulation results exhibit that a hollow Gold cluster can positively increase the electrons’ extraction. This condition may improve the acceleration of low-divergence H+, C6+, and Au67+ ions. Our simulation shows that at the end of the interaction, for a Gold cluster with an optimal hollow radius of 91.3 nm, the cut-off energy of H+, C6+, and Au67+ are about 54.9 MeV/u, 51.5 MeV/u, and 54.9 MeV/u, respectively. In this case, an increase of about 52% for H+ and 61% for C6+ is obtained, contrast to bare HC hollow nanosphere (i.e., a hollow nanosphere with no cluster), while the relative divergence decreases to 1.38 and 1.86, respectively for H+ and C6+ ions. We have also compared our simulation results with another proposed target structure composed of a void area with an optimum diameter of 70.4 nm between the fully- Gold nanocluster and HC nanosphere. We have exhibited that the results are improved, contrast to bare nanosphere. However, the cut-off energy suppression and angular divergence increase are shown compared with encapsulated hollow Gold nanocluster structure.


2008 ◽  
Vol 128 (15) ◽  
pp. 154313 ◽  
Author(s):  
Maxim Artamonov ◽  
Tamar Seideman

2003 ◽  
Vol 21 (4) ◽  
pp. 541-544 ◽  
Author(s):  
M. LONTANO ◽  
M. BORGHESI ◽  
S.V. BULANOV ◽  
T.Z. ESIRKEPOV ◽  
D. FARINA ◽  
...  

Low-frequency, relativistic, subcycle solitary waves are found in two-dimensional and three-dimensional particle-in-cell (PIC) numerical simulations, as a result of the interaction of ultrashort, high-intensity laser pulses with plasmas. Moreover, nondrifting, subcycle relativistic electromagnetic solitons have been obtained as solutions of the hydrodynamic equations for an electron–ion warm plasma, by assuming the quasi-neutrality character of the plasma response. In addition, the formation of long-living macroscopic soliton-like structures has been experimentally observed by means of the proton imaging diagnostics. Several common features result from these investigations, as, for example, the quasi-neutral plasma response to the soliton radiation, in the long-term evolution of the system, which leads to the almost complete expulsion of the plasma from the region where the electromagnetic radiation is concentrated, even at subrelativistic field intensity. The results of the theoretical investigations are reviewed with special attention to these similarities.


2006 ◽  
Vol 24 (1) ◽  
pp. 5-8 ◽  
Author(s):  
TATSUFUMI NAKAMURA ◽  
HITOSHI SAKAGAMI ◽  
TOMOYUKI JOHZAKI ◽  
HIDEO NAGATOMO ◽  
KUNIOKI MIMA

Fast electrons are effectively generated from solid targets of cone-geometry by irradiating intense laser pulses, which is applied to fast ignition scheme. For realizing optimal core heating by those electrons, understanding the characteristics of electrons emitted from cone targets is crucial. In this paper, in order to understand the generation and transport processes of hot electrons inside the cone target, two-dimensional (2D) particle-in-cell (PIC) simulations were carried out. It is shown that hot electrons form current layers which are guided by self-generated surface magnetic field, which results in effective energy transfer from laser pulse to hot electrons. When the hot electrons propagate through the steep density gradient at the cone tip, electrostatic field is induced via Weibel instability. As a result, hot electrons are confined inside and emitted gradually from the target, as an electron beam of long duration. Energy spectrum and temporal profile of hot electrons are also evaluated at the rear side of the target, where the profile of rear side plasma is taken from the fluid code and the result is sent to Fokker-Planck code.


2007 ◽  
Vol 25 (4) ◽  
pp. 631-638 ◽  
Author(s):  
W. Yu ◽  
M. Y. Yu ◽  
H. Xu ◽  
Y. W. Tian ◽  
J. Chen ◽  
...  

AbstractSelf-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.


2012 ◽  
Vol 78 (4) ◽  
pp. 461-468 ◽  
Author(s):  
WEI-MIN WANG ◽  
ZHENG-MING SHENG ◽  
SHIGEO KAWATA ◽  
CHUN-YANG ZHENG ◽  
YU-TONG LI ◽  
...  

AbstractEnergetic electron beam generation from a thin foil target by the ponderomotive force of an ultra-intense circularly polarized laser pulse is investigated. Two-dimensional particle-in-cell (PIC) simulations show that laser pulses with intensity of 1022–1023 Wcm−2 generate about 1–10 GeV electron beams, in agreement with the prediction of one-dimensional theory. When the laser intensity is at 1024–1025 Wcm−2, the beam energy obtained from PIC simulations is lower than the values predicted by the theory. The radiation damping effect is considered, which is found to become important for the laser intensity higher than 1025 Wcm−2. The effect of laser focus positions is also discussed.


Author(s):  
Jia Wang ◽  
Ming Zeng ◽  
Xiaoning Wang ◽  
Dazhang Li ◽  
Jie Gao

Abstract We propose to use a frequency doubled pulse colliding with the driving pulse at an acute angle to trigger ionization injection in a laser wakefield accelerator. This scheme effectively reduces the duration that injection occurs, thus high injection quality is obtained. Three-dimensional particle-in-cell simulations show that electron beams with energy of ~500 MeV, charge of ~40 pC, energy spread of ~1% and normalized emittance of a few millimeter milliradian can be produced by ~100 TW laser pulses. By adjusting the angle between the two pulses, the intensity of the trigger pulse and the gas dope ratio, the charge and energy spread of the electron beam can be controlled.


Sign in / Sign up

Export Citation Format

Share Document