scholarly journals Optimization of Electron Beams Based on Plasma-Density Modulation in a Laser-Driven Wakefield Accelerator

2021 ◽  
Vol 11 (6) ◽  
pp. 2560
Author(s):  
Lintong Ke ◽  
Changhai Yu ◽  
Ke Feng ◽  
Zhiyong Qin ◽  
Kangnan Jiang ◽  
...  

We demonstrate a simple but efficient way to optimize and improve the properties of laser-wakefield-accelerated electron beams (e beams) based on a controllable shock-induced density down-ramp injection that is achieved with an inserted tunable shock wave. The e beams are tunable from 400 to 800 MeV with charge ranges from 5 to 180 pC. e beams with high reproducibility (of ~95% in consecutive 100 shots) were produced in elaborate experiments with an average root- mean-square energy spread of 0.9% and an average divergence of 0.3 mrad. Three-dimensional particle-in-cell (PIC) simulations were also performed to accordingly verify and uncover the process of the injection and the acceleration. These tunable e beams will facilitate practical applications for advanced accelerator beam sources.

Author(s):  
Jia Wang ◽  
Ming Zeng ◽  
Xiaoning Wang ◽  
Dazhang Li ◽  
Jie Gao

Abstract We propose to use a frequency doubled pulse colliding with the driving pulse at an acute angle to trigger ionization injection in a laser wakefield accelerator. This scheme effectively reduces the duration that injection occurs, thus high injection quality is obtained. Three-dimensional particle-in-cell simulations show that electron beams with energy of ~500 MeV, charge of ~40 pC, energy spread of ~1% and normalized emittance of a few millimeter milliradian can be produced by ~100 TW laser pulses. By adjusting the angle between the two pulses, the intensity of the trigger pulse and the gas dope ratio, the charge and energy spread of the electron beam can be controlled.


2014 ◽  
Vol 32 (3) ◽  
pp. 449-454 ◽  
Author(s):  
D.N. Gupta ◽  
K. Gopal ◽  
I.H. Nam ◽  
V.V. Kulagin ◽  
H. Suk

AbstractThis research reports the increased electron energy gain from laser wakefield acceleration in density-modulated plasma with an external magnetic field. Periodic plasma density- modulation can excite higher harmonics of different phase velocities of fundamental wakefield that can assist in improving the self-trapping of pre-accelerated electrons to accelerate them for higher energy. Furthermore, the applied magnetic field assisted self-injection can also contribute in electron energy enhancement during the acceleration. The physical mechanism is described with a theoretical formulation for this scheme. Results of two-dimensional particle-in-cell simulations are reported to understand the proposed idea.


2012 ◽  
Vol 19 (5) ◽  
pp. 056703 ◽  
Author(s):  
S. Banerjee ◽  
N. D. Powers ◽  
V. Ramanathan ◽  
I. Ghebregziabher ◽  
K. J. Brown ◽  
...  

2008 ◽  
Vol 36 (4) ◽  
pp. 1124-1125
Author(s):  
J. F. Vieira ◽  
S. F. Martins ◽  
F. Fiuza ◽  
R. A. Fonseca ◽  
L. O. Silva ◽  
...  

Author(s):  
Antoine Maitrallain ◽  
Enrico Brunetti ◽  
Matthew Streeter ◽  
Brendan Kettle ◽  
Roman Spesyvtsev ◽  
...  

Abstract Laser wakefield accelerators commonly produce on-axis, low-divergence, high-energy electron beams. However, a high charge, annular shaped beam can be trapped outside the bubble and accelerated to high energies. Here we present a parametric study on the production of low-energy-spread, ultra-relativistic electron ring beams in a two-stage gas cell. Ring-shaped beams with energies higher than 750 MeV are observed simultaneously with on axis, continuously injected electrons. Often multiple ring shaped beams with different energies are produced and parametric studies to control the generation and properties of these structures were conducted. Particle tracking and particle-in-cell simulations are used to determine properties of these beams and investigate how they are formed and trapped outside the bubble by the wake produced by on-axis injected electrons. These unusual femtosecond duration, high-charge, high-energy, ring electron beams may find use in beam driven plasma wakefield accelerators and radiation sources.


1994 ◽  
Vol 12 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Glenn Joyce ◽  
Jonathan Krall ◽  
Steven Slinker

ELBA is a three-dimensional, particle-in-cell, simulation code that has been developed to study the propagation and transport of relativistic charged particle beams. The code is particularly suited to the simulation of relativistic electron beams propagating through collisionless or slightly collisional plasmas or through external electric or magnetic fields. Particle motion is followed via a coordinate “window” in the laboratory frame that moves at the speed of light. This scheme allows us to model only the immediate vicinity of the beam. Because no information can move in the forward direction in these coordinates, particle and field data can be handled in a simple way that allows for very large scale simulations. A mapping scheme has been implemented that, with corrections to Maxwell's equations, allows the inclusion of bends in the simulation system.


2018 ◽  
Vol 84 (3) ◽  
Author(s):  
X. Davoine ◽  
F. Fiúza ◽  
R. A. Fonseca ◽  
W. B. Mori ◽  
L. O. Silva

In this paper, we determine the growth rate of the exponential radiation amplification in the ion-channel laser, where a relativistic electron beam wiggles in a focusing ion channel that can be created in a wakefield accelerator. For the first time the radiation diffraction, which can limit the amplification, is taken into account. The electron beam quality requirements to obtain this amplification are also presented. It is shown that both the beam energy and wiggler parameter spreads should be limited. Two-dimensional and three-dimensional particle-in-cell simulations of the self-consistent ion-channel laser confirm our theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document