A new fuzzy sliding mode controller for vibration control systems using integrated-structure smart dampers

2017 ◽  
Vol 26 (4) ◽  
pp. 045038 ◽  
Author(s):  
Sy Dzung Nguyen ◽  
Wanho Kim ◽  
Jhinha Park ◽  
Seung-Bok Choi
Author(s):  
Do Xuan Phu ◽  
Nguyen Vien Quoc ◽  
Joon-Hee Park ◽  
Seung-Bok Choi

This paper presents vibration control of a mixed-mode magnetorheological fluid-based mount system using a new robust fuzzy sliding mode controller. A novel model of controller is built based on adaptive hybrid control of interval type 2 fuzzy controller incorporating with a new modified sliding mode control. The interval type 2 fuzzy is optimized for computational cost by using enhanced iterative algorithm with stop condition, and a new modified switching surface of sliding mode control is designed for preventing the chattering of the system. The controller is then experimentally implemented under uncertain conditions in order to evaluate robust vibration control performance. In addition, in order to demonstrate the effectiveness of the proposed controller, two fuzzy sliding mode control algorithms proposed by Huang and Chan are adopted and modified. The principal control parameters of three controllers are updated online by adaptation laws to meet requirements of magnetorheological mount system which has two operation modes: flow mode and shear mode. It is shown from experimental realization of three controllers that the proposed control strategy performs the best under uncertain conditions compared with two other modified controllers. This merit is verified by presenting vibration control performances in both time and frequency domains.


2017 ◽  
Vol 36 (4) ◽  
pp. 366-375 ◽  
Author(s):  
Longfei Sun ◽  
Weijia Li ◽  
Yaozhong Wu ◽  
Qiuhua Lan

Conical shell structures are commonly used in many engineering systems, and vibration suppression is very important to realize the desired function. In this study, piezoelectric ceramics were used as actuators/sensors with a multimodal fuzzy sliding mode controller to suppress vibrations of conical shell structure for the first time. The structure’s natural frequencies and mode shapes were obtained through modal analysis using finite element method and verified by modal tests. The agreement between analysis and test results verified the finite element method was appropriate. A multimodal fuzzy sliding mode controller was subsequently designed based on the analysis to provide active vibration control. The resulting controller was tested experimentally for the conical shell structure. The experimental results indicated that the proposed controller can effectively use to suppress vibration for the conical shell structure.


Sign in / Sign up

Export Citation Format

Share Document