Co-rotational thermo-mechanically coupled multi-field framework and finite element for the large displacement analysis of multi-layered shape memory alloy beam-like structures

2017 ◽  
Vol 26 (6) ◽  
pp. 065028 ◽  
Author(s):  
Alexandros G Solomou ◽  
Theodoros T Machairas ◽  
Anargyros A Karakalas ◽  
Dimitris A Saravanos
2012 ◽  
Vol 23 (10) ◽  
pp. 1143-1160 ◽  
Author(s):  
Walid Khalil ◽  
Alain Mikolajczak ◽  
Céline Bouby ◽  
Tarak Ben Zineb

In this article, we propose a finite element numerical tool adapted to a Fe-based shape memory alloy structural analysis, based on a developed constitutive model that describes the effect of phase transformation, plastic sliding, and their interactions on the thermomechanical behavior. This model was derived from an assumed expression of the Gibbs free energy taking into account nonlinear interaction quantities related to inter- and intragranular incompatibilities as well as mechanical and chemical quantities. Two scalar internal variables were considered to describe the phase transformation and plastic sliding effects. The hysteretic and specific behavior patterns of Fe-based shape memory alloy during reverse transformation were studied by assuming a dissipation expression. The proposed model effectively describes the complex thermomechanical loading paths. The numerical tool derived from the implicit resolution of the nonlinear partial derivative constitutive equations was implemented into the Abaqus® finite element code via the User MATerial (UMAT) subroutine. After tests to verify the model for homogeneous and heterogeneous thermomechanical loadings, an example of Fe-based shape memory alloy application was studied, which corresponds to a tightening system made up of fishplates for crane rails. The results we obtained were compared to experimental ones.


2018 ◽  
Vol 29 (15) ◽  
pp. 3151-3164 ◽  
Author(s):  
Fathollah Taheri-Behrooz ◽  
Mohammad Javad Mahdavizade ◽  
Alireza Ostadrahimi

Due to the weak interface in shape memory alloy wire–reinforced composites, the influence of interphase on the mechanical properties and stress distribution of hybrid composites is of considerable importance. In this article, a three-cylinder axisymmetric model using a pull-out test is developed to predict stress transfer and interfacial behavior between shape memory alloy wire, interphase, and matrix. In this article, only superelasticity behavior of the shape memory alloy wire is considered. Based on the stress function method and the principle of minimum complementary energy, stress distribution is derived for three different cases in terms of loading and boundary conditions (thermal loading model, intact model, and partially debonded model). Inhomogeneous interphase and different radial and hoop stress components in each phase are considered to achieve deeper physical understanding. Finite element analysis also performed to simulate stress transfer from the wire to the matrix through the interphase. To evaluate the accuracy of this model, the results of the work are compared with the results of the two-cylinder model proposed by Wang et al. and finite element results.


2012 ◽  
Vol 445 ◽  
pp. 577-582
Author(s):  
Zainudin A. Rasid ◽  
Saiful Amri Mazlan ◽  
Amran Ayob ◽  
Rizal Zahari ◽  
Dayang Laila Majid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document