scholarly journals Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

2017 ◽  
Vol 26 (12) ◽  
pp. 125005 ◽  
Author(s):  
Austin Downey ◽  
Simon Laflamme ◽  
Filippo Ubertini
Author(s):  
David M. McStravick ◽  
Brent C. Houchens ◽  
David C. Garland ◽  
Kenneth E. Davis

Due to the increasing demand for alternative energy sources and the reliability of wind turbines, the performance of different horizontal-axis wind turbine blade designs were investigated and compared through computational fluid dynamics (CFD) modeling and wind tunnel testing. The Eppler 423 airfoil was of particular interest. In avionics the blade has been associated with high lift and a low tendency to stall, yet little is known about its performance in wind turbines. In both physical testing and ANSYS CFX 11.0 analysis, the airfoil significantly outperformed a Nordtank 41/500 turbine blade. Wind tunnel tests were performed on 12-inch diameter ABS polymer prototypes, created with a 3D printer. To exaggerate the features of each prototype and obtain more measureable differences in turbine performance, the blades are scaled down more in the radial direction than in the profile section directions. The Eppler 423 airfoil design was tested at different blade base angles. The testing identified an optimum power production for a blade base angle of 25°. In the ANSYS CFX computer simulations, the moments on to the turbine blade due to the incoming air allowed for the power generated and the coefficient of power (Cp) to be determined and compared. The Eppler profile outperformed the Nordtank blade profile in these simulations.


Author(s):  
O. Eisele ◽  
G. Pechlivanoglou ◽  
C. N. Nayeri ◽  
C. O. Paschereit

Wind turbine blade design is currently based on the combination of a plurality of airfoil sections along the rotorblade span. The two-dimensional airfoil characteristics are usually measured with wind tunnel experiments or computed by means of numerical simulation codes. The general airfoil input for the calculation of the rotorblade power characteristics as well as the subsequent aerodynamic and aeroelastic loads are based on these two-dimensional airfoil characteristics. In this paper, the effects of inflow turbulence and wind tunnel test measurement deviations are investigated and discussed, to allow considerations of such effects in the rotorblade design process. The results of CFD simulations with various turbulence models are utilized in combination with wind tunnel measurements in order to assess the impact of such discrepancies. It seems that turbulence, airfoil surface roughness and early transition effects are able to contribute significantly to the uncertainty and scattering of measurements. Various wind tunnel facilities generate different performance characteristic curves, while grid-generated turbulence is generally not included in the wind tunnel measurements during airfoil characterization. Furthermore the correlation of grid-generated wind tunnel turbulence with the atmospheric turbulence time and length scales is not easily achieved. All the aforementioned uncertainties can increase the performance scattering of current wind turbine blade designs as well as the generated aeroelastic loads. A brief assessment of the effect of such uncertainties on wind turbine performance is given at the last part of this work by means of BEM simulations on a wind turbine blade.


Author(s):  
Jason R. Gregg ◽  
Kenneth W. Van Treuren

When studied in large wind turbines, roughness on wind turbine blades has been shown to decrease wind turbine performance by up to 50%. However, during wind turbine testing in the Baylor University Subsonic Wind Tunnel, roughness effects that were an artifact of the blade manufacturing process led to a significant power increase over smooth blades at the design wind speed of 10 mph. These results have led to an investigation of the effects of roughness on wind turbine performance under a flow condition with local Reynolds numbers ranging from 14,200 to 58,800. It was found that under these flow conditions the roughness can improve measured power output by up to 126% when compared with a smooth blade. This paper examines the conditions where roughness can positively affect the operation of a wind turbine by testing a 500 mm diameter, horizontal axis, three blade, fixed pitch wind turbine system in a wind tunnel. The experiments have been carried out on a single direct-drive wind turbine model and a single blade design using the NREL designed S818 airfoil. The design point for the blades tested is 10 miles per hour, with a tip speed ratio of 7. Roughness can be an effective treatment when used at or near the stall speed of the wind turbine blade for lower Reynolds number conditions. The roughness elements tested were both perpendicular to and along the flow lines. These blades were then compared to a blade configuration without roughness elements.


2016 ◽  
Vol 753 ◽  
pp. 022028 ◽  
Author(s):  
I. Bayati ◽  
M. Belloli ◽  
L. Bernini ◽  
R. Mikkelsen ◽  
A. Zasso

Sign in / Sign up

Export Citation Format

Share Document