Evolution of hysteresis characteristic of shape memory alloys at incomplete phase transformation cyclic loading

Author(s):  
Yajun You ◽  
Xin Guo

Abstract The phase transformation ratchetting of Shape Memory Alloys (SMAs) at incomplete phase transformation cyclic loading is experimentally and theoretically investigated. To this end, two different kinds of incomplete phase transformation cyclic loading tests on NiTi wires are performed, i.e. incomplete transformation cyclic loads are respectively applied at the stages of forward martensite transformation and reverse martensite transformation. When the cyclic load of incomplete transformation is applied in the positive martensitic transformation stage, a novel phenomenon is discovered: although there is no greater stress to drive the anstenite turn to martensite, the SMAs can still gradually undergo martensite transformation and accumulation until martensite reaches saturation. The hysteretic behavior finally reaches a shakedown state where the strain-stress curve no longer changes with the number of cycles. When the cyclic load of incomplete transformation is applied in the reverse martensitic transformation stage, a similar phenomenon is obtatined. According to the analysis of the temperature evolution during the deformation process of the SMAs, combined with the relationship between the phase transformation yield stress and the temperature of SMAs, the experimental results are reasonably explained. This research is of great significance for a more comprehensive grasp of the mechanical behavior of SMAs.

Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 345 ◽  
Author(s):  
Weiya Li ◽  
Chunwang Zhao

The microstructure and martensitic transformation behavior of Ni50−xTi50Lax (x = 0.1, 0.3, 0.5, 0.7) shape memory alloys were investigated experimentally. Results show that the microstructure of Ni50−xTi50Lax alloys consists of a near-equiatomic TiNi matrix, LaNi precipitates, and Ti2Ni precipitates. With increasing La content, the amounts of LaNi and Ti2Ni precipitates demonstrate an increasing tendency. The martensitic transformation start temperature increases gradually with increasing La content. The Ni content is mainly responsible for the change in martensite transformation behavior in Ni50−xTi50Lax alloys.


2012 ◽  
Vol 28 (3) ◽  
pp. 469-477 ◽  
Author(s):  
H. Lei ◽  
B. Zhou ◽  
Z. Wang ◽  
Y. Wang

AbstractIn this paper, the thermomechanical behavior of shape memory alloys (SMAs) subjected to uniaxial cyclic loading is investigated. To obtain experimental data, the strain-controlled cyclic loading-unloading tests are conducted at various strain-rates and temperatures. Dislocations slip and deformation twins are considered to be the main reason that causes the unique cyclic mechanical behavior of SMAs. A new variable of shape memory residual factor was introduced, which will tend to zero with the increasing of the number of cycles. Exponential form equations are established to describe the evolution of shape memory residual factor, elastic modulus and critical stress, in which the influence of strain-rate, number of cycles and temperature are taken into account. The relationship between critical stresses and temperature is modified by considering the cycling effect. A macromechanical constitutive model was constructed to predict the cyclic mechanical behavior at constant temperature. Based on the material parameters obtained from test results, the hysteretic behavior of SMAs subjected to isothermal uniaxial cyclic loading is simulated. It is shown that the numerical results of the modified model match well with the test results.


2003 ◽  
Vol 792 ◽  
Author(s):  
X. T. Zu ◽  
F.R. Wan ◽  
S. Zhu ◽  
L. M. Wang

ABSTRACTTiNi shape memory alloy (SMA) has potential applications for nuclear reactors and its phase stability under irradiation is becoming an important topic. Some irradiation-induced diffusion-dependent phase transformations, such as amorphization, have been reported before. In the present work, the behavior of diffusion-independent phase transformation in TiNi SMA was studied by electron irradiation at room temperature. The effect of irradiation on the martensitic transformation of TiNi shape memory alloys was studied by Transmission Electron Microscopy (TEM) with in-situ observation and differential scanning calorimeter (DSC). The results of TEM and DSC measurements show that the microstructure of samples is R phase at room temperature. Electron irradiations were carried out using several different TEM with accelerating voltage of 200 kV, 300 kV, 400 kV and 1000 kV. Also the accelerating voltage in the same TEM was changed to investigate the critical voltage for the effect of irradiation on phase transformation. It was found that a phase transformation occurred under electron irradiation above 320 kV, but never appeared at 300 kV or lower accelerating voltage. Such phase transformation took place in a few seconds of irradiation and was independent of atom diffusion. The mechanism of Electron-irradiation-induced the martensitic transformation due to displacements of atoms from their lattice sites produced by the accelerated electrons.


2015 ◽  
Vol 833 ◽  
pp. 67-70
Author(s):  
Shui Yuan Yang ◽  
Cui Ping Wang ◽  
Yu Su ◽  
Xing Jun Liu

The evolutions of microstructure and phase transformation behavior of Cu-Al-Fe-Nb/Ta high-temperature shape memory alloys under the quenched and aged states were investigated in this study, including Cu-10wt.% Al-6wt.% Fe, Cu-10wt.% Al-4wt.% Fe-2wt.% Nb and Cu-10wt.% Al-4wt.% Fe-2wt.% Ta three types alloys. The obtained results show that after quenching, Cu-10wt.% Al-6wt.% Fe alloy exhibits two-phase microstructure of β′1 martensite + Fe (Al,Cu) phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy also has two-phase microstructure of (β′1 + γ′1 martensites) + Nb (Fe,Al,Cu)2 phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Ta alloy is consisted of three-phase of (β′1 + γ′1 martensites) + Fe (Al,Cu,Ta) + Ta2(Al,Cu,Fe)3 phases. However, α (Cu) phase precipitates after aging for three alloys; and Fe (Al,Cu,Nb) phase is also present in Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy. All the studied alloys exhibit complicated martensitic transformation behaviors resulted from the existence of two types martensites (β′1 and γ′1).


2013 ◽  
Vol 631-632 ◽  
pp. 326-330
Author(s):  
Xiao Yu Kang ◽  
Yan Feng Li ◽  
Xiang Qian Yin ◽  
Hao Feng Xie ◽  
Xu Jun Mi

Comparing with Ti50Ni47Fe3alloys, the influences of Cr on the mechanical and shape memory properties of Ti50Ni47Fe3alloys are investigated by study on phase transformation and microstructure analysis. The results show that Ti50Ni47Fe3and Ti50Ni46.75Fe3Cr0.25shape memory alloys exhibit two-stage martensitic transformation. The transformation temperatures decrease with the addition of Cr. The microstructure of the Ti50Ni47Fe3and Ti50Ni46.75Fe3Cr0.25alloys consists of TiNi matrix, Ti2Ni phase. Fe element prefers to substitute for Ni in the matrix than black particles. Cr all substitute for Ni in the matrix and not be analyzed in the Ti2Ni phase. The mechanical property of Ti50Ni46.75Fe3Cr0.25alloy is better than Ti50Ni47Fe3alloy.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-973-C8-978
Author(s):  
M. Jurado ◽  
Ll. Mañosa ◽  
A. González-Comas ◽  
C. Stassis ◽  
A. Planes

Sign in / Sign up

Export Citation Format

Share Document