Lattice defect induced nanorod growth in YBCO films deposited on an advanced IBAD-MgO template

2020 ◽  
Vol 33 (7) ◽  
pp. 075008
Author(s):  
E Rivasto ◽  
M Z Khan ◽  
Y Wu ◽  
Y Zhao ◽  
C Chen ◽  
...  
Author(s):  
M. Talianker ◽  
D.G. Brandon

A new specimen preparation technique for visualizing macromolecules by conventional transmission electron microscopy has been developed. In this technique the biopolymer-molecule is embedded in a thin monocrystalline gold foil. Such embedding can be performed in the following way: the biopolymer is deposited on an epitaxially-grown thin single-crystal gold film. The molecule is then occluded by further epitaxial growth. In such an epitaxial sandwich an occluded molecule is expected to behave as a crystal-lattice defect and give rise to contrast in the electron microscope.The resolution of the method should be limited only by the precision with which the epitaxially grown gold reflects the details of the molecular structure and, in favorable cases, can approach the lattice resolution limit.In order to estimate the strength of the contrast due to the void-effect arising from occlusion of the DNA-molecule in a gold crystal some calculations were performed.


1983 ◽  
Vol 44 (C4) ◽  
pp. C4-305-C4-311
Author(s):  
A. Castaldini ◽  
A. Cavallini ◽  
P. Gondi

1992 ◽  
Author(s):  
Edgar J. Denlinger
Keyword(s):  

2019 ◽  
Author(s):  
Sam E. Karcher ◽  
◽  
Travis A. Olds ◽  
Kyle W. Kriegsman ◽  
Xiaofeng Guo ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Manasi Doshi ◽  
Eric Paul Fahrenthold

Explosives and hazardous gas sensing using carbon nanotube (CNT) based sensors has been a focus of considerable experimental research. The simplest sensors have employed a chemiresistive sensing mechanism, and rely...


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3357
Author(s):  
Péter Nagy ◽  
Nadia Rohbeck ◽  
Zoltán Hegedűs ◽  
Johann Michler ◽  
László Pethö ◽  
...  

A nanocrystalline Co-Cr-Ni-Fe compositional complex alloy (CCA) film with a thickness of about 1 micron was produced by a multiple-beam-sputtering physical vapor deposition (PVD) technique. The main advantage of this novel method is that it does not require alloy targets, but rather uses commercially pure metal sources. Another benefit of the application of this technique is that it produces compositional gradient samples on a disk surface with a wide range of elemental concentrations, enabling combinatorial analysis of CCA films. In this study, the variation of the phase composition, the microstructure (crystallite size and defect density), and the mechanical performance (hardness and elastic modulus) as a function of the chemical composition was studied in a combinatorial Co-Cr-Ni-Fe thin film sample that was produced on a surface of a disk with a diameter of about 10 cm. The spatial variation of the crystallite size and the density of lattice defects (e.g., dislocations and twin faults) were investigated by X-ray diffraction line profile analysis performed on the patterns taken by synchrotron radiation. The hardness and the elastic modulus were measured by the nanoindentation technique. It was found that a single-phase face-centered cubic (fcc) structure was formed for a wide range of chemical compositions. The microstructure was nanocrystalline with a crystallite size of 10–27 nm and contained a high lattice defect density. The hardness and the elastic modulus values measured for very different compositions were in the ranges of 8.4–11.8 and 182–239 GPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document