scholarly journals The chaotic set and the cross section for chaotic scattering in three degrees of freedom

2010 ◽  
Vol 12 (10) ◽  
pp. 103021 ◽  
Author(s):  
C Jung ◽  
O Merlo ◽  
T H Seligman ◽  
W P K Zapfe
Author(s):  
Jeffrey Feaster ◽  
Francine Battaglia ◽  
Javid Bayandor

The influence of cross-sectional geometry on flight performance is investigated for an insect wing using bee-like kinematics. Bee flight is of particular interest due to its mechanical simplicity, utilizing only three degrees of freedom, a high flap frequency, and mechanically linked front and hind wings. These unique flapping flight kinematics result in extremely agile flight characteristics, capable of carrying extraordinary loads relative to the bee’s weight, at a biologically capable efficiency. The performance of a corrugated insect wing and a more intuitively aerodynamic profile are compared computationally. At velocities from 1–3 m/s, the approximated cross-section is foudn to overpredict the lift generated by the corrugated profile by up to 18%. At higher velocities, 4 and 5 m/s, the approximated profile underpredicts the lift generated by the corrugated cross-section by 15%. Based upon this information the cross-sectional geometry of an insect’s wing is significant to the investigation and quantification of insect flight characteristics, for both computational analysis and future robotic applications.


2005 ◽  
Vol 20 (25) ◽  
pp. 1859-1873
Author(s):  
YOSHIFUMI HYAKUTAKE

In this paper we review the properties of supertubes in type IIA superstring theory. The supertube is a tubular D2-brane which carries D0-brane charge N0, fundamental string charge N1 and angular momentum J. Even if we fix two charges N0, N1 and angular momentum J, a generic supertube has degrees of freedom to deform its shape of the cross-section. We explicitly count this degeneracy and evaluate the entropy of supertubes from the field theoretical viewpoint.


2019 ◽  
Vol 79 (9) ◽  
Author(s):  
Cong Wang ◽  
Jun-Kang He ◽  
Ming-Zhen Zhou

Abstract As one of the simplest hadronic processes, $$\gamma \gamma \rightarrow M^{+}M^{-}$$γγ→M+M- ($$M=\pi ,K$$M=π,K) could be a good testing ground for our understanding of the perturbative and nonperturbative structure of QCD, and will be studied with high precision at BELLE-II in the near future. In this paper, we revisit these processes with twist-3 corrections in the perturbative QCD approach based on the $$k_{T}$$kT factorization theorem, in which transverse degrees of freedom as well as resummation effects are taken into account. The influence of the distribution amplitudes on the cross sections are discussed in detail. Our work shows that not only the transverse momentum effects but also the twist-3 corrections play a significant role in the processes $$\gamma \gamma \rightarrow M^{+}M^{-}$$γγ→M+M- in the intermediate energy region. Especially in the few GeV region, the twist-3 contributions become dominant in the cross sections. And it is noteworthy that both the twist-3 result of the $$\pi ^{+}\pi ^{-}$$π+π- cross section and that of the $$K^{+}K^{-}$$K+K- cross section agree well with the BELLE and ALEPH measurements. For the pion and kaon angular distributions, there still exist discrepancies between our results and the experimental measurements. Possible reasons for these discrepancies are discussed briefly.


2010 ◽  
Author(s):  
Christof Jung ◽  
W. P. Karel Zapfe ◽  
Olivier Merlo ◽  
T. H. Seligman ◽  
Kurt B. Wolf ◽  
...  

Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


2009 ◽  
Author(s):  
Marci Culley ◽  
Holly Angelique ◽  
Courte Voorhees ◽  
Brian John Bishop ◽  
Peta Louise Dzidic ◽  
...  

The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Sign in / Sign up

Export Citation Format

Share Document