scholarly journals Non-magnetic impurities and in-gap bound states in topological insulators

2011 ◽  
Vol 13 (10) ◽  
pp. 103016 ◽  
Author(s):  
Jie Lu ◽  
Wen-Yu Shan ◽  
Hai-Zhou Lu ◽  
Shun-Qing Shen
SPIN ◽  
2011 ◽  
Vol 01 (01) ◽  
pp. 33-44 ◽  
Author(s):  
SHUN-QING SHEN ◽  
WEN-YU SHAN ◽  
HAI-ZHOU LU

We present a general description of topological insulators from the point of view of Dirac equations. The Z2 index for the Dirac equation is always zero, and thus the Dirac equation is topologically trivial. After the quadratic term in momentum is introduced to correct the mass term m or the band gap of the Dirac equation, i.e., m → m − Bp2, the Z2 index is modified as 1 for mB > 0 and 0 for mB < 0. For a fixed B there exists a topological quantum phase transition from a topologically trivial system to a nontrivial system when the sign of mass m changes. A series of solutions near the boundary in the modified Dirac equation is obtained, which is characteristic of topological insulator. From the solutions of the bound states and the Z2 index we establish a relation between the Dirac equation and topological insulators.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Howon Kim ◽  
Levente Rózsa ◽  
Dominik Schreyer ◽  
Eszter Simon ◽  
Roland Wiesendanger

Abstract Quantum mechanical systems with long-range interactions between quasiparticles provide a promising platform for coherent quantum information technology. Superconductors are a natural choice for solid-state based quantum devices, while magnetic impurities inside superconductors give rise to quasiparticle excitations of broken Cooper pairs that provide characteristic information about the host superconductor. Here, we reveal that magnetic impurities embedded below a superconducting La(0001) surface interact via quasiparticles extending to very large distances, up to several tens of nanometers. Using low-temperature scanning probe techniques, we observe the corresponding anisotropic and giant oscillations in the LDOS. Theoretical calculations indicate that the quasi-two-dimensional surface states with their strongly anisotropic Fermi surface play a crucial role for the focusing and long-range extension of the magnetic bound states. The quasiparticle focusing mechanism should facilitate the design of versatile magnetic structures with tunable and directed magnetic interactions over large distances, thereby paving the way toward the design of low-dimensional magnet–superconductor hybrid systems exhibiting topologically non-trivial quantum states as possible elements of quantum computation schemes based on Majorana quasiparticles.


2013 ◽  
Vol 1564 ◽  
Author(s):  
M. R. Mahani ◽  
A. Pertsova ◽  
C.M. Canali ◽  
M. F. Islam ◽  
A.H. MacDonald

ABSTRACTWe present results of theoretical studies of transition metal dopants in GaAs, based on microscopic tight-binding model and ab-initio calculations. We focus in particular on how the vicinity of surface affects the properties of the hole-acceptor state, its magnetic anisotropy and its magnetic coupling to the magnetic dopant. In agreement with STM experiments, Mn substitutional dopants on the (110) GaAs surface give rise to a deep acceptor state, whose wavefunction is localized around the Mn center. We discuss a refinement of the theory that introduces explicitly the d-levels for the TM dopant. The explicit inclusion of d-levels is particularly important for addressing recent STM experiments on substitutional Fe in GaAs. In the second part of the paper we discuss an analogous investigation of single dopants in Bi2Se3 three-dimensional topological insulators, focusing in particular on how substitutional impurities positioned on the surface affect the electronic structure in the gap. We present explicit results for BiSe antisite defects and compare with STM experiments.


2016 ◽  
Vol 119 (19) ◽  
pp. 193903 ◽  
Author(s):  
Dimitrios Andrikopoulos ◽  
Bart Sorée ◽  
Jo De Boeck

Materials ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 1652-1686 ◽  
Author(s):  
Vincenzo Parente ◽  
Gabriele Campagnano ◽  
Domenico Giuliano ◽  
Arturo Tagliacozzo ◽  
Francisco Guinea

Crystals ◽  
2013 ◽  
Vol 3 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Denis Klöpfer ◽  
Alessandro De Martino ◽  
Reinhold Egger

Sign in / Sign up

Export Citation Format

Share Document