scholarly journals Field-induced tricritical phenomenon and magnetic structures in magnetic Weyl semimetal candidate NdAlGe

Author(s):  
Jun Zhao ◽  
Wei Liu ◽  
Aziz Ur Rahman ◽  
Fanying Meng ◽  
Langsheng Ling ◽  
...  

Abstract Non-centrosymmetric NdAlGe is considered to be a candidate for magnetic Weyl semimetal in which the Weyl nodes can be moved by magnetization. Clarification of the magnetic structures and couplings in this system is thus crucial to understand its magnetic topological properties. In this work, we conduct a systematical study of magnetic properties and critical behaviors of single-crystal NdAlGe. Angle-dependent magnetization exhibits strong magnetic anisotropy along the c-axis and absolute isotropy in the ab-plane. The study of critical behavior with H//c gives critical exponents β = 0.236(2), γ = 0.920(1), and δ = 4.966(1) at critical temperature TC = 5.2(2) K. Under the framework of the universality principle, M(T, H) curves are scaled into universality curves using these critical exponents, demonstrating reliability and self-consistency of the obtained exponents. The critical exponents of NdAlGe are close to the theoretical prediction of a tricritical mean-field model, indicating a field-induced tricritical behavior. Based on the scaling analysis, a H −T phase diagram for NdAlGe with H//c is constructed, revealing a ground state with an up-up- down spin configuration. The phase diagram unveils multiple phases including up-up-down domains, up-up-down ordering state, polarized ferromagnetic (PFM), and paramagnetic (PM) phases, with a tricritical point (TCP) located at the intersection [TT CP = 5.27(1) K, HT CP = 30.1(3) kOe] of up-up-down, PFM, and PM phases. The multiple phases and magnetic structures imply a delicate competition and balance between variable interactions and couplings, laying a solid foundation for unveiling topological properties and critical phenomena in this system.

1999 ◽  
Vol 542 (1-2) ◽  
pp. 413-424 ◽  
Author(s):  
P. Bialas ◽  
Z. Burda ◽  
D. Johnston

1998 ◽  
Vol 12 (08) ◽  
pp. 271-279 ◽  
Author(s):  
H. Yurtseven ◽  
S. Salihoğlu

In this study we obtain the P–T phase diagram for the ice VI–VII–VIII phase transitions by means of the mean field model developed here. We have fitted the experimentally measured P–T data to our phase line equations. Our calculated phase diagram describes adequately the observed behavior of the ice VI–VII–VIII phase transitions.


2015 ◽  
Vol 05 (03) ◽  
pp. 1550024
Author(s):  
H. Yurtseven ◽  
F. Oğuz

Using Landau mean field model, the spontaneous polarization and the dielectric susceptibility are analyzed as functions of temperature and pressure close to the cubic–tetragonal (ferroelectric–paraelectric) transition in [Formula: see text]. From the analysis of the dielectric susceptibility and the spontaneous polarization, the critical exponents are deduced in the classical and quantum limits for [Formula: see text]. From the critical behavior of the dielectric susceptibility, the spontaneous polarization can be described for the ferroelectric–paraelectric (cubic to tetragonal) transition between 4 and 8 GPa at constant temperatures of 0 to 200 K in [Formula: see text] within the Landau mean field model given here.


Author(s):  
Peter Grassberger

Abstract In all local low-dimensional models, scaling at critical points deviates from mean field behavior – with one possible exception. This exceptional model with “ordinary” behavior is an inherently non-equilibrium model studied some time ago by H.-M. Bröker and myself. In simulations, its 2-dimensional version suggested that two critical exponents were mean-field, while a third one showed very small deviations. Moreover, the numerics agreed almost perfectly with an explicit mean field model. In the present paper we present simulations with much higher statistics, both for 2d and 3d. In both cases we find that the deviations of all critical exponents from their mean field values are non-leading corrections, and that the scaling is precisely of mean field type. As in the original paper, we propose that the mechanism for this is “confusion”, a strong randomization of the phases of feed-backs that can occur in non-equilibrium systems.


2017 ◽  
Vol 31 (31) ◽  
pp. 1750245 ◽  
Author(s):  
Y. Enginer ◽  
G. Algul ◽  
H. Yurtseven

The P–T phase diagram is calculated at low and moderate pressures by obtaining the phase line equations for the transitions considered in nitrogen using the Landau phenomenological model. For some transitions, a quadratic coupling between the order parameters is taken into account in the expansion of free energies in terms of the order parameters. A quadratic function in T and P is fitted to the experimental P–T data from the literature and the fitted parameters are determined.It is shown that the model studied here describes the observed data adequately, which can also be used to predict the thermodynamic properties of the phases of the molecular nitrogen within the temperatures and pressures of the P–T phase diagram of this system.


Sign in / Sign up

Export Citation Format

Share Document