scholarly journals A Mechanical True Random Number Generator

Author(s):  
Nozomi Akashi ◽  
Kohei Nakajima ◽  
Mitsuru Shibayama ◽  
Yasuo Kuniyoshi

Abstract Random number generation has become an indispensable part of information processing: it is essential for many numerical algorithms, security applications, and in securing fairness in everyday life. Random number generators (RNG) find application in many devices, ranging from dice and roulette wheels, via computer algorithms, lasers to quantum systems, which inevitably capitalize on their physical dynamics at respective spatio-temporal scales. Herein, to the best of our knowledge, we propose the first mathematically proven true RNG (TRNG) based on a mechanical system, particularly the triple linkage of Thurston and Weeks. By using certain parameters, its free motion has been proven to be an Anosov flow, from which we can show that it has an exponential mixing property and structural stability. We contend that this mechanical Anosov flow can be used as a TRNG, which requires that the random number should be unpredictable, irreproducible, robust against the inevitable noise seen in physical implementations, and the resulting distribution's controllability (an important consideration in practice). We investigate the proposed system's properties both theoretically and numerically based on the above four perspectives. Further, we confirm that the random bits numerically generated pass the standard statistical tests for random bits.

2014 ◽  
Vol 573 ◽  
pp. 181-186 ◽  
Author(s):  
G.P. Ramesh ◽  
A. Rajan

—Field-programmable gate array (FPGA) optimized random number generators (RNGs) are more resource-efficient than software-optimized RNGs because they can take advantage of bitwise operations and FPGA-specific features. A random number generator (RNG) is a computational or physical device designed to generate a sequence of numbers or symbols that lack any pattern, i.e. appear random. The many applications of randomness have led to the development of several different methods for generating random data. Several computational methods for random number generation exist, but often fall short of the goal of true randomness though they may meet, with varying success, some of the statistical tests for randomness intended to measure how unpredictable their results are (that is, to what degree their patterns are discernible).LUT-SR Family of Uniform Random Number Generators are able to handle randomness only based on seeds that is loaded in the look up table. To make random generation efficient, we propose new approach based on SRAM storage device.Keywords: RNG, LFSR, SRAM


Author(s):  
Kentaro Tamura ◽  
Yutaka Shikano

Abstract A cloud quantum computer is similar to a random number generator in that its physical mechanism is inaccessible to its users. In this respect, a cloud quantum computer is a black box. In both devices, its users decide the device condition from the output. A framework to achieve this exists in the field of random number generation in the form of statistical tests for random number generators. In the present study, we generated random numbers on a 20-qubit cloud quantum computer and evaluated the condition and stability of its qubits using statistical tests for random number generators. As a result, we observed that some qubits were more biased than others. Statistical tests for random number generators may provide a simple indicator of qubit condition and stability, enabling users to decide for themselves which qubits inside a cloud quantum computer to use.


2019 ◽  
Vol 8 (2) ◽  
pp. 1-5
Author(s):  
Rajashree Chaurasia

Most programming languages have in-built functions for the sole purpose of generating pseudo-random numbers. This manuscript is aimed at analyzing the appropriateness of some of these in-built functions for some basic goodness-of-fit statistical tests for random number generators. The document is divided into four sections. The first section gives a broad introduction about randomness and the methods of generation of pseudo-random numbers. Section two discusses the statistical tests that were employed for testing the built-in library functions for random number generation. This section is followed by an analysis of the data collected for the various statistics in the third section, and lastly, the fourth section presents the results of the data analysis.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 960 ◽  
Author(s):  
Luyao Wang ◽  
Hai Cheng

In recent years, a chaotic system is considered as an important pseudo-random source to pseudo-random number generators (PRNGs). This paper proposes a PRNG based on a modified logistic chaotic system. This chaotic system with fixed system parameters is convergent and its chaotic behavior is analyzed and proved. In order to improve the complexity and randomness of modified PRNGs, the chaotic system parameter denoted by floating point numbers generated by the chaotic system is confused and rearranged to increase its key space and reduce the possibility of an exhaustive attack. It is hard to speculate on the pseudo-random number by chaotic behavior because there is no statistical characteristics and infer the pseudo-random number generated by chaotic behavior. The system parameters of the next chaotic system are related to the chaotic values generated by the previous ones, which makes the PRNG generate enough results. By confusing and rearranging the output sequence, the system parameters of the previous time cannot be gotten from the next time which ensures the security. The analysis shows that the pseudo-random sequence generated by this method has perfect randomness, cryptographic properties and can pass the statistical tests.


2008 ◽  
Vol 18 (03) ◽  
pp. 851-867 ◽  
Author(s):  
K. W. TANG ◽  
H. S. KWOK ◽  
WALLACE K. S. TANG ◽  
K. F. MAN

Random number generators are widely used in different applications. However, it is difficult to obtain a good random number generator in low precision and resource constrained system, such as an eight-bit micro-controller system which is still commonly used in industrial and consumer markets. This paper provides a practical solution for this problem based on chaotic systems. By the use of a modified Chua's circuit, it is demonstrated that the sampled state, after post-processing by a high-dimensional chaotic map, can be used as a random source even in an eight-bit environment. The randomness of the generated sequence is testified and confirmed by different statistical tests and the up-to-date statistical suite.


Author(s):  
Babacar Alasane Ndaw ◽  
Ousmane Ndiaye ◽  
Mamadou Sanghar´e ◽  
Cheikh Thi´ecoumba Gueye

One family of the cryptographic primitives is random Number Generators (RNG) which have several applications in cryptography such that password generation, nonce generation, Initialisation vector for Stream Cipher, keystream. Recently they are also used to randomise encryption and signature schemes. A pseudo-random number generator (PRNG) or a pseudo-random bit generator (PRBG) is a deterministic algorithm that produces numbers whose distribution is on the one hand indistinguishable from uniform ie. that the probabilities of appearance of the different symbols are equal and that these appearances are all independent. On the other hand, the next output of a PRNG must be unpredictable from all its previous outputs. Indeed, A set of statistical tests for randomness has been proposed in the literature and by NIST to evaluate the security of random(pseudo) bit or block. Unfortunately there are non-random binary streams that pass these standardized tests. In this pap er, as outcome, we intro duce on the one hand a new statistical test in a static contextcalled attendance’s law and on the other hand a distinguisher based on this new attendance’s law.    


2020 ◽  
Author(s):  
Scott Stoller

Random numbers are an important, but often overlooked part of the modern computing environment. They are used everywhere around us for a variety of purposes, from simple decision making in video games such as a coin toss, to securing financial transactions and encrypting confidential communications. They are even useful for gambling and the lottery. Random numbers are generated in many ways. Pseudo random number generators (PRNGs) generate numbers based on a formula. True random number generators (TRNGs) capture entropy from the environment to generate randomness. As our society and our devices become more connected in the digital world, it is important to develop new ways to generate truly random numbers in order to secure communications and connected devices. In this work a novel memristor-based True Random Number Generator is designed and a physical implementation is fabricated and tested using a W-based self-directed channel (SDC) memristor. The circuit was initially designed and prototyped on a breadboard. A custom Printed Circuit Board (PCB) was fabricated for the final circuit design and testing of the novel memristor-based TRNG. The National Institute of Standards and Technology (NIST) Statistical Test Suite (STS) was used to check the output of the TRNG for randomness. The TRNG was demonstrated to pass 13 statistical tests out of the 15 in the STS.


2021 ◽  
Author(s):  
Kayvan Tirdad

Pseudo random number generators (PRNGs) are one of the most important components in security and cryptography applications. We propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This research is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. Also, we propose an application of Fuzzy Hopfield Neural Networks (FHNN) as pseudo random number generator. We compare the main features of ideal random number generators with our proposed PRNGs. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance of proposed HNN and FHNN. We also measure the performance of other standard PRNGs and compare the results with HNN and FHNN PRNG. We have shown that our proposed HNN and FHNN have good performance comparing to other PRNGs accordingly.


Author(s):  
Maksim Iavich ◽  
◽  
Tamari Kuchukhidze ◽  
Sergiy Gnatyuk ◽  
Andriy Fesenko

Random numbers have many uses, but finding true randomness is incredibly difficult. Therefore, quantum mechanics is used, using the essentially unpredictable behavior of a photon, to generate truly random numbers that form the basis of many modern cryptographic protocols. It is essential to trust cryptographic random number generators to generate only true random numbers. This is why certification methods are needed which will check both the performance of our device and the quality of the random bits generated. Self-testing as well as device independent quantum random number generation methods are analyzed in the paper. The advantages and disadvantages of both methods are identified. The model of a novel semi self-testing certification method for quantum random number generators is offered in the paper. This method combines different types of certification approaches and is rather secure and efficient. The method is very important for computer science, because it combines the best features from selftesting and device independent methods. It can be used, when the random numbers’ entropy depends on the device and when it does not. In the related researches, these approaches are offered to be used separately, depending on the random number generator. The offered novel certification technology can be properly used, when the device is compromised or spoiled. The technology can successfully detect unintended irregularities, operational problems, abnormalities and problems in the randomization process. The offered mythology assists to eliminate problems related to physical devices. The offered system has the higher certification randomness security and is faster than self-testing approaches. The method is rather efficient because it implements the different certification approaches in the parallel threads. The offered techniques make the offered research must more efficient than the other existing approaches. The corresponding programming simulation is implemented by means of the simulation techniques.


2021 ◽  
Author(s):  
Kayvan Tirdad

Pseudo random number generators (PRNGs) are one of the most important components in security and cryptography applications. We propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This research is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. Also, we propose an application of Fuzzy Hopfield Neural Networks (FHNN) as pseudo random number generator. We compare the main features of ideal random number generators with our proposed PRNGs. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance of proposed HNN and FHNN. We also measure the performance of other standard PRNGs and compare the results with HNN and FHNN PRNG. We have shown that our proposed HNN and FHNN have good performance comparing to other PRNGs accordingly.


Sign in / Sign up

Export Citation Format

Share Document