Entropy generation on convectively heated surface of casson fluid with viscous dissipation

2020 ◽  
Vol 95 (11) ◽  
pp. 115203
Author(s):  
Gangadhar Kotha ◽  
Venkata Subba Rao M ◽  
Manasa Seshakumari P ◽  
Ali J Chamkha
2020 ◽  
Vol 16 (6) ◽  
pp. 1435-1455 ◽  
Author(s):  
B.J. Gireesha ◽  
A. Roja

PurposeMicrofluidics is one of the interesting areas of the research in thermal and engineering fields due to its wide range of applications in a variety of heat transport problems such as micromixers, micropumps, cooling systems for microelectromechanical systems (MEMS) micro heat exchangers, etc. Lower cost with better thermal performance is the main objective of these devices. Therefore, in this study, the entropy generation in an electrically conducting Casson fluid flow through an inclined microchannel with hydraulic slip and the convective condition hves been numerically investigated. Aspects of viscous dissipation, natural convection, joule heating, magnetic field and uniform heat source/sink are usedDesign/methodology/approachSuitable non-dimensional variables are used to reduce the non-linear system of ordinary differential equations, and then this system is solved numerically using Runge-Kutta-Fehlberg fourth fifth order method along with shooting technique. The obtained numerical solutions of the fluid velocity and temperature are used to characterize the entropy generation and Bejan number. Also, the Nusselt number and skin friction coefficient for various values of parameters are examined in detail through graphs. The obtained present results are compared with the existing one which is perfectly found to be in good agreement.FindingsIt is established that the production of the entropy can be improved with the aspects of joule heating, viscous dissipation and internal heat source/sink. The entropy generation enhances for increasing values of Casson Parameter (β) and Biot number (Bi). Furthermore, it is interestingly noticed that the enhancement of Reynolds number and uniform heat source/sink shows the dual behaviour of the entropy generation due to significant influence of the viscous forces in the region close to the channel walls. It was observed that increasing behaviour of the heat transfer rate for enhancement values of the Eckert number and heat source/sink ratio parameter and the drag force are retarded with higher estimations of Reynolds number.Originality/valueEntropy generation analysis on MHD Casson fluid flow through an inclined microchannel with the aspects of convective, Joule heating, viscous dissipation, magnetism, hydraulic slip and internal heat source/sink has been numerically investigated.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 498
Author(s):  
Wasim Ullah Khan ◽  
Muhammad Awais ◽  
Nabeela Parveen ◽  
Aamir Ali ◽  
Saeed Ehsan Awan ◽  
...  

The current study is an attempt to analytically characterize the second law analysis and mixed convective rheology of the (Al2O3–Ag/H2O) hybrid nanofluid flow influenced by magnetic induction effects towards a stretching sheet. Viscous dissipation and internal heat generation effects are encountered in the analysis as well. The mathematical model of partial differential equations is fabricated by employing boundary-layer approximation. The transformed system of nonlinear ordinary differential equations is solved using the homotopy analysis method. The entropy generation number is formulated in terms of fluid friction, heat transfer and Joule heating. The effects of dimensionless parameters on flow variables and entropy generation number are examined using graphs and tables. Further, the convergence of HAM solutions is examined in terms of defined physical quantities up to 20th iterations, and confirmed. It is observed that large λ1 upgrades velocity, entropy generation and heat transfer rate, and drops the temperature. High values of δ enlarge velocity and temperature while reducing heat transport and entropy generation number. Viscous dissipation strongly influences an increase in flow and heat transfer rate caused by a no-slip condition on the sheet.


Author(s):  
Istvan Szabo ◽  
Mark G. Turner

Defining the thermodynamic efficiency of the wet compression process in a compressor is not trivial, since the flow in this case has multiple phases present which interact with each other. In this paper, an approach is presented that calculates the overall entropy creation and thus the isentropic efficiency of a wet compression process in a transonic compressor rotor. The viscous dissipation function is calculated everywhere in the domain in the post-processing phase of the CFD simulation and integrated to the wall, with special treatment in the near-wall regions where high rates of entropy generation occur. The isentropic efficiency of the wet compression is then determined from the entropy generation rate. Analytical integration of wall functions and numerical integration of the viscous dissipation function allows for reasonable results even with relatively coarse grids and can be applied for single-phase flows. The methodology presented is also useful to quantify the efficiency of thermodynamic processes in devices that introduce streams into the flow path, such as cooled turbines and compressors with flow control.


Author(s):  
M.A. Mansour ◽  
Sameh Elsayed Ahmed ◽  
Ali J. Chamkha

Purpose This paper aims to investigate the entropy generation due to magnetohydrodynamic natural convection flow and heat transfer in a porous enclosure filled with Cu-water nanofluid in the presence of viscous dissipation effect. The left and right walls of the cavity are thermally insulated. There are heated and cold parts, and these are placed on the bottom and top wall, respectively, whereas the remaining parts are thermally insulated. Design/methodology/approach The finite volume method is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published woks is presented and is found to be in an excellent agreement. Findings The minimization of entropy generation and local heat transfer according to different values of the governing parameters are presented in details. It is found that the presence of magnetic field has negative effects on the local entropy generation because of heat transfer and the local total entropy generation. Also, the increase in the heated part length leads to a decrease in the local Nusselt number. Originality/value This problem is original, as it has not been considered previously.


Author(s):  
Harshad Sanjay Gaikwad ◽  
Pranab Kumar Mondal ◽  
Dipankar Narayan Basu ◽  
Nares Chimres ◽  
Somchai Wongwises

In this article, we perform an entropy generation analysis for the micro channel heat sink applications where the flow of fluid is actuated by combined influences of applied pressure gradient and electric field under electrical double layer phenomenon. The upper and lower walls of the channels are kept at different constant temperatures. The temperature-dependent viscosity of the fluid is considered and hence the momentum equation and energy equations are coupled in this study. Also, a hydrodynamic slip condition is employed on the viscous dissipation. For complete analysis of the entropy generation, we use a perturbation approach with lubrication approximation. In this study, we discuss the results depicting variations in the velocity and temperature distributions and their effect on local entropy generation rate and Bejan number in the system. It can be summarized from this analysis that the enhanced velocity gradients in the flow field due to combined effect of temperature-dependent viscosity and Joule heating and viscous dissipative effects, leads to an enhancement in the local entropy generation rate in the system.


2019 ◽  
Vol 15 (2) ◽  
pp. 398-417 ◽  
Author(s):  
Subrata Das ◽  
Hiranmoy Mondal ◽  
Prabir Kumar Kundu ◽  
Precious Sibanda

PurposeThe focus of the paper is only on the contributions toward the use of entropy generation of non-Newtonian Casson fluid over an exponential stretching sheet. The purpose of this paper is to investigate the entropy generation and homogeneous–heterogeneous reaction. Velocity and thermal slips are considered instead of no-slip conditions at the boundary.Design/methodology/approachBasic equations in form of partial differential equations are converted into a system of ordinary differential equations and then solved using the spectral quasi-linearization method (SQLM).FindingsThe validity of the model is established using error analysis. Variation of the velocity, temperature, concentration profiles and entropy generation against some of the governing parameters are presented graphically. It is to be noted that the increase in entropy generation due to increase in heterogeneous reaction parameter is due to the increase in heat transfer irreversibility. It is further noted that the Bejan number decreases with Brinkman number because increase in Brinkman number reduces the total entropy generation.Originality/valueThis paper acquires realistic numerical explanations for rapidly convergent temperature and concentration profiles using the SQLM. Convergence of the numerical solutions was monitored using the residual error of the PDEs. The resulting equations are then integrated using the SQLM. The influence of emergent flow, heat and mass transfer parameters effects are shown graphically.


Sign in / Sign up

Export Citation Format

Share Document