Non-locality and geometric potential provide the phenomenology of the double-hole single massive particle interference

2021 ◽  
Author(s):  
Roman Castaneda ◽  
Pablo Bedoya ◽  
Giorgio Matteucci

Abstract In spite of its accurate prediction of the experimental outcomes of double-hole single particle interference, quantum mechanics does not provide a phenomenological description of the individual realizations of the experiment. By defining a non-locality function and considering the non-paraxial solution of the time-independent Schrödinger equation by the Green’s theorem, we introduce a geometrical potential which leads to an outstanding result. The geometric potential allows the description of spatially structured Lorentzian wells in the volume between the double-hole mask and the detector. The buildup of the interference patterns results from the confined propagation of single particles through these Lorentzian wells. The phenomenological implications of this description are discussed and illustrated by numerical examples, and its compatibility with quantum mechanical predictions is also shown. A further, non-trivial advantage of this model over the conventional formalism, is that the present quantum probability density can be exactly calculated both in the near and far field conditions.

2014 ◽  
Vol 28 (26) ◽  
pp. 1450179 ◽  
Author(s):  
Gerhard Grössing

A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.


2001 ◽  
Vol 56 (1-2) ◽  
pp. 5-15
Author(s):  
Yakir Aharonov ◽  
Alonso Botero ◽  
Marian Scully

Abstract The folklore notion of the "Non-Locality of Quantum Mechanics" is examined from the point of view of hidden-variables theories according to Belinfante's classification in his Survey of Hidden Variables Theories. It is here shown that in the case of EPR, there exist hidden variables theories that successfully reproduce quantum-mechanical predictions, but which are explicitly local. Since such theories do not fall into Belinfante's classification, we propose an expanded classification which includes similar theories, which we term as theories of the "third" kind. Causal implications of such theories are explored. -Pacs: 03.65.Bz


2019 ◽  
Author(s):  
Joshua Horton ◽  
Alice Allen ◽  
Daniel Cole

<div><div><div><p>The quantum mechanical bespoke (QUBE) force field is used to retrospectively calculate the relative binding free energy of a series of 17 flexible inhibitors of p38α MAP kinase. The size and flexibility of the chosen molecules represent a stringent test of the derivation of force field parameters from quantum mechanics, and enhanced sampling is required to reduce the dependence of the results on the starting structure. Competitive accuracy with a widely-used biological force field is achieved, indicating that quantum mechanics derived force fields are approaching the accuracy required to provide guidance in prospective drug discovery campaigns.</p></div></div></div>


Author(s):  
Craig Callender

Two of quantum mechanics’ more famed and spooky features have been invoked in defending the idea that quantum time is congenial to manifest time. Quantum non-locality is said by some to make a preferred foliation of spacetime necessary, and the collapse of the quantum wavefunction is held to vindicate temporal becoming. Although many philosophers and physicists seek relief from relativity’s assault on time in quantum theory, assistance is not so easily found.


1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


2011 ◽  
Vol 20 (05) ◽  
pp. 729-743 ◽  
Author(s):  
JOÃO PAULO M. PITELLI ◽  
PATRICIO S. LETELIER

We review the mathematical framework necessary to understand the physical content of quantum singularities in static spacetimes. We present many examples of classical singular spacetimes and study their singularities by using wave packets satisfying Klein–Gordon and Dirac equations. We show that in many cases the classical singularities are excluded when tested by quantum particles but unfortunately there are other cases where the singularities remain from the quantum mechanical point of view. When it is possible we also find, for spacetimes where quantum mechanics does not exclude the singularities, the boundary conditions necessary to turn the spatial portion of the wave operator to be self-adjoint and emphasize their importance to the interpretation of quantum singularities.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Meixia Chen ◽  
Cong Zhang ◽  
Xiangfan Tao ◽  
Naiqi Deng

This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.


General formulas for estimating the errors in quantum-mechanical calculations are given in the formalism of density matrices. Some properties of the traces of matrices are used to simplify the estimating and to indicate a way of obtaining a better approximation. It is shown that the simultaneous correction of all the equations to be fulfilled leads in most cases to a faster convergence than the exact fulfilment of some of the equations and approximating stepwise to some of the others. The corrective formulas contain only direct operations of the matrices occurring and so they are advantageous in computer applications. In the last section a ‘subjective error’ definition is given and by taking into account the weight of the errors of the several equations a faster convergence and a single error quantity is obtained. Some special applications of the method will be published later.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Frank Wilczek

Quantum mechanics is nearly one hundred years old; and yet the challenge it presents to the imagination is so great that scientists are still coming to terms with some of its most basic implications. Theoretical insights and recent experimental results in anyon physics are leading physicists to revise and expand their ideas about what quantum-mechanical particles are and how they behave.


Atoms ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 42 ◽  
Author(s):  
Wayne Huang ◽  
Herman Batelaan

The interference pattern in electron double-slit diffraction is a hallmark of quantum mechanics. A long-standing question for stochastic electrodynamics (SED) is whether or not it is capable of reproducing such effects, as interference is a manifestation of quantum coherence. In this study, we used excited harmonic oscillators to directly test this quantum feature in SED. We used two counter-propagating dichromatic laser pulses to promote a ground-state harmonic oscillator to a squeezed Schrödinger cat state. Upon recombination of the two well-separated wavepackets, an interference pattern emerges in the quantum probability distribution but is absent in the SED probability distribution. We thus give a counterexample that rejects SED as a valid alternative to quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document