scholarly journals On the thermodynamic origin of the initial radiation energy density in warm inflation

2016 ◽  
Vol 2016 (11) ◽  
pp. 022-022 ◽  
Author(s):  
Yongwan Gim ◽  
Wontae Kim
2017 ◽  
Vol 26 (14) ◽  
pp. 1730025 ◽  
Author(s):  
Wontae Kim

We review a recently proposed effective Tolman temperature and present its applications to various gravitational systems. In the Unruh state for the evaporating black holes, the free-fall energy density is found to be negative divergent at the horizon, which is in contrast to the conventional calculations performed in the Kruskal coordinates. We resolve this conflict by invoking that the Kruskal coordinates could be no longer proper coordinates at the horizon. In the Hartle–Hawking–Israel state, despite the negative finite proper energy density at the horizon, the Tolman temperature is divergent there due to the infinite blueshift of the Hawking temperature. However, a consistent Stefan–Boltzmann law with the Hawking radiation shows that the effective Tolman temperature is eventually finite everywhere and the equivalence principle is surprisingly restored at the horizon. Then, we also show that the firewall necessarily emerges out of the Unruh vacuum, so that the Tolman temperature in the evaporating black hole is naturally divergent due to the infinitely blueshifted negative ingoing flux crossing the horizon, whereas the outgoing Hawking radiation characterized by the effective Tolman temperature indeed originates from the quantum atmosphere, not just at the horizon. So, the firewall and the atmosphere for the Hawking radiation turn out to be compatible, once we discard the fact that the Hawking radiation in the Unruh state originates from the infinitely blueshifted outgoing excitations at the horizon. Finally, as a cosmological application, the initial radiation energy density in warm inflation scenarios has been assumed to be finite when inflation starts. We successfully find the origin of the nonvanishing initial radiation energy density in the warm inflation by using the effective Tolman temperature.


2018 ◽  
Vol 168 ◽  
pp. 06004 ◽  
Author(s):  
Yongwan Gim ◽  
Wontae Kim

In this presentation, we are going to explain the thermodynamic origin of warm inflation scenarios by using the effetive Stefan-Boltzmann law. In the warm inflation scenarios, radiation always exists to avoid the graceful exit problem, for which the radiation energy density should be assumed to be finite at the starting point of the warm inflation. To find out the origin of the non-vanishing initial radiation energy density, we derive an effective Stefan-Boltzmann law by considering the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law successfully shows where the initial radiation energy density is thermodynamically originated from. And by using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation. This proceeding is based on Ref. [1]


1988 ◽  
Vol 31 (10) ◽  
pp. 966-967
Author(s):  
V. I. Andreev ◽  
A. P. Palivoda ◽  
S. P. Fetisov ◽  
N. V. Shalomeeva ◽  
V. A. Yakovlev

2022 ◽  
Vol 1049 ◽  
pp. 11-17
Author(s):  
Ivan Kaplunov ◽  
Taras Malinskiy ◽  
S.I. Mikolutskiy ◽  
Vladimir Rogalin ◽  
Yuriy Khomich ◽  
...  

We investigated the process of laser heat treatment of polished brass samples (36% zinc, containing a small amount of lead, which does not dissolve in the alloy and is in the form of inclusions, having micron and submicron size) by impacting to a series of 25 - 30 ultraviolet (UV) pulses of a Nd:YAG laser (third harmonic, wavelength λ = 355 nm, duration τ = 10 ns, pulse repetition rate f = 10 Hz, pulse energy density ~ 0.15 - 1.0 J/cm2) in the stationary spot mode. Copper and its alloys absorb up to 90% of the energy of this laser. It is found that the relaxation of the absorbed energy of laser radiation in the metal occurs nonuniformly. Defects in the metal structure such as grain boundaries and lead inclusions are visualized. Traces of crystallographic sliding appear inside some grains. With an increase in the number of impacting impulses, accumulation of damage is observed. A further increase in the radiation energy density leads to an aggravation of the observed phenomena.


1981 ◽  
Vol 25 (2) ◽  
pp. 193-213 ◽  
Author(s):  
J. L. Bobin

Gasdynamical equations taking radiation energy density and ponderomotive pressure into account are investigated. Conditions for these quantities to be important are stated: low absorption, reflexion at cut-off. The density ratio in a discontinuity is studied as a function of ponderomotive pressure, absorbed intensity and Mach number in the initial state. Chapman–Jouguet conditions are defined. Compressive (R type) flows and rarefaction (D type) appear. The structure of the latter is discussed including plasma effects.


1972 ◽  
Vol 94 (3) ◽  
pp. 289-294 ◽  
Author(s):  
R. P. Caren

The present paper investigates the impact of one or more small cavity dimensions on the radiation energy density and radiation heat flux in rectangular metallic cavities. The emphasis of the present analysis is the exact treatment of the modal structure of the electromagnetic field in a small cavity in determining the properties of the thermal radiation field in the cavity. The excitation spectrum of the modes is assumed to be given by the Planck distribution function. The Poynting theorem is invoked in order to determine the radiative heat flux absorbed by the walls from the radiation in the cavity. Variation of the dimensions of the rectangular cavity allows the effects of cavity size and shape on the radiant energy density and radiant heat transfer to be assessed, particularly in several interesting limiting cases. It is found that significant deviations from the classical theory occur whenever any of the cavity dimensions satisfy the inequality lT ≤ 1 cm-deg K. It is further found that, when two or more of the cavity dimensions satisfy the above inequality, the radiant energy density and radiant heat transfer are significantly reduced in comparison to the results of classical theory. However, when only one dimension is limited, as in the case of a closely spaced parallel-surface geometry, the radiant energy density and radiant heat transfer are significantly increased compared to the classical theory.


2019 ◽  
Vol 62 (2) ◽  
pp. 232-235
Author(s):  
R. R. Akhmetshin ◽  
E. A. Babichev ◽  
D. N. Grigoriev ◽  
V. R. Groshev ◽  
V. F. Kazanin ◽  
...  

2021 ◽  
Vol 503 (1) ◽  
pp. 1367-1373
Author(s):  
J Fukue

ABSTRACT Two-dimensional funnel flows driven by radiation pressure in the conical funnel formed by the critical accretion disc are examined using the self-similar treatment. The flow is assumed to be steady and axisymmetric, and other forces such as viscosity and magnetic fields are ignored. For various boundary conditions on the funnel wall at the disc surface, the self-similar solutions are found to be classified into three types: funnel-filled solutions, where the flow gas fills the whole region of the funnel; polar-hollow ones, where there appears a cavity around the polar axis, and unphysical ones in a sense that, e.g. the radiation energy density becomes negative. For the physically reasonable solutions, the flow gas generally concentrates to the funnel wall, and the flow density and the radiation energy density monotonically decrease from the funnel wall towards the polar axis, while the radial flux becomes negative near the polar axis. The vertical velocity increases towards the polar axis, while the vertical flux has often the maximum between the polar axis and the funnel wall. As a result, the present self-similar funnel jets are such a flow with a slow dense outer part and a fast rarefied inner part.


Sign in / Sign up

Export Citation Format

Share Document